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Abstract—In this paper, the impact of cooperative power allocation
on distributed altruistic coalition formation in cooperative relay
networks is studied. Particularly, equal power allocation (EPA), max-
min rate (MMR) and sum-of-rates maximizing (SRM) power allocation
criteria are considered. A distributed merge-and-split algorithm is
proposed to allow network nodes to form coalitions and improve their
total achievable rate. The proposed algorithm is compared with that
of centralized power control and coalition formation, and is shown to
yield a good tradeoff between network sum-rate and computational
complexity. Finally, numerical results illustrate that the SRM power
allocation criterion promotes altruistic coalition formation and results
in the largest coalitions among the different power allocation criteria.

Index Terms—Coalition formation, cooperation, decode-and-
forward (DF), network coding, power allocation

I. INTRODUCTION

In ad-hoc wireless networks, network nodes are independent,
autonomous and selfish by nature and thus may not voluntarily
share their transmission resources with other nodes. In other
words, there is an element of competition and selfishness since
all participating network nodes desire to maximize their utilities by
maximizing their share of transmission resources. Also, randomly
distributed nodes with local information may not know whom to
cooperate with even if they are willing to cooperate. Although
cooperative communications have been shown to yield significant
performance gains [1], cooperation entails several costs such as
bandwidth and power. Ignoring such costs is unwarranted as it may
severely affect the nodes’ own performance. Particularly, network
nodes may not cooperate and instead divert their resources to direct
data transmissions. Alternatively, a group of nodes could form a
coalition and cooperate to maximize the overall gains of the group
and thus promote altruism. Specifically, each node seeks partners to
form a cooperative coalition to achieve rate improvement for itself
and/or for the whole coalition. Establishing cooperation in ad-hoc
wireless networks without a centralized controller is a dynamic
process. In turn, designing practical distributed algorithms that can
promote cooperation without relying on centralized control is a
difficult but highly desirable task.

Coalitional game theory has emerged as an effective mathemat-
ical tool for modeling users’ cooperation and designing distributed
protocols in wireless networks. Several works have considered
coalition formation for user cooperation in wireless networks. For
instance, a simple distributed merge-and-split algorithm is proposed
in [2] for the formation of virtual MIMO clusters of single-antenna
nodes. The curse of the boundary nodes in selfish packet-forwarding
wireless networks is resolved using coalitional games in [3]. In [4],
fair group coalitions for power-aware routing in wireless networks
is studied and distributed algorithms based on max-min fairness are
proposed. Distributed coalition formations with transferable utilities
and stable outcomes in relay networks are studied in [5].

In this work, altruistic coalition formation is considered and the
aim is to address the following questions: (1) How can coalitions

be formed in a distributed fashion?, and (2) What is the impact
of different power allocation criteria on coalition formation? To
form cooperative groups, a coalition formation algorithm based
on merge-and-split rules is proposed and proven to converge with
arbitrary merge-and-split iterations. Each network node is treated
as a player, who seeks partners to form a cooperative group
to improve its transmission rate and/or that of the whole group
through spatial diversity while incurring some power cost to meet
a target SNR for information exchange. Moreover, the impact of
equal power allocation (EPA), max-min rate (MMR) and sum-
of-rates maximizing (SRM) power allocation criteria on coalition
formation are studied. To the best of the authors’ knowledge, no
work has employed coalitional games in the analysis and design
of protocols for altruistic coalition formation in network-coded
cooperative wireless networks.

In the remainder of this paper, the system model is presented
in Section II. In Section III, the coalitional formation framework
is discussed, while the proposed distributed coalition formation
algorithm is provided in Section IV. The different cooperative
power allocation criteria are discussed in Section V, while the
centralized power allocation and coalition formation are discussed
in Section VI. The partition stability, convergence and complexity
properties of the proposed algorithm are discussed in Section
VII. Numerical results are presented in Section VIII while the
conclusions are drawn in Section IX.

II. SYSTEM MODEL

Consider an ad-hoc wireless network that consists of N single-
antenna half-duplex decode-and-forward nodes for N ≥ 3 which
are denoted S1, S2, . . . , SN . Each node wishes to exchange its data
symbol xj for j ∈ {1, 2, . . . , N} with a common destination D. The
channel between nodes Sj and Si is given by hj,i = eȷθj,i

√
d−ν
j,i ,

with ν being the path-loss exponent and θj,i is the signal’s phase
uniformly distributed in the interval [0, 2π] while dj,i is the distance
between the two nodes. Channel hj,i between nodes Sj and Si

is assumed to reciprocal (i.e. hj,i = hi,j) with perfect channel
estimation at each node. Also, let S = {S1, S2, . . . , SN} be the
finite, non-empty set of all network nodes that eventually self-
organize into K (for 1 ≤ K ≤ N ) mutually exclusive coalitions
of cooperative nodes C = {C1, C2, . . . , CK} with no cooperation
between coalitions. Moreover, let Ck ⊆ S denote a coalition with
|Ck| nodes (where | · | represents the cardinality of a set) and
1 ≤ |Ck| ≤ N . An individual non-cooperative player is called
a singleton coalition while the set S is called the grand coalition
when all the N network nodes cooperate. An example of a network
of N = 5 nodes with a possible coalition formation is shown in Fig.
1. Communication between the nodes and destination is performed
in a TDMA fashion over N + 1 time-slots and is split into two
phases; the broadcasting phase and the cooperation phase.



Fig. 1. Example of Cooperative Coalitions and their Transmissions

A. Broadcasting Phase

In the broadcasting phase of N time-slots, each node Sj—in
its assigned time-slot Tj—broadcasts its data symbol xj , which
is received by the N − 1 other nodes Si in the network for i ∈
{1, 2, . . . , N}i ̸=j , as well as the destination. The signal received at
node Si for i ̸= j is expressed as

yj,i =
√

PBjhj,ixj + nj,i, (1)

while the received signal at the destination is given by

yj,d =
√

PBjhj,dxj + nj,d, (2)

where PBj is the broadcasting transmit power at node Sj , and
nj,i and nj,d are zero-mean complex additive white Gaussian noise
(AWGN) samples with variance N0, at node Si and the destination,
respectively. Upon the completion of the broadcasting phase, each
node Si will have received a set of N − 1 signals {yj,i}Nj=1,j ̸=i

comprising symbols x1, . . . , xi−1, xi+1, . . . , xN from all the other
nodes in the network, while the destination will have received N
signals {yj,d}Nj=1. Each node Si then performs a matched filtering
operation on each received signal yj,i with signal-to-noise ratio
(SNR) at the output of the matched-filter being given by [1]

γBP
j,i =

PBj |hj,i|2

N0
=

PBjd
−ν
j,i

N0
. (3)

Let fj denote the node farthest from Sj in Sj’s coalition Ck. Each
node Sj ∈ Ck broadcasts its symbol using transmit power PBj

required to maintain a target SNR of γ between itself and node
Sfj as

PBj ≥ γN0d
ν
j,fj , (4)

where γ is common to all the network nodes. Clearly, there is a
tradeoff between the power invested in satisfying the target SNR
and power allocated to the other members in coalition Ck. It should
be noted that each node has a transmit power constraint of P as
given by P = PBj + PCj , where PCj is the effective cooperative
power at node Sj to relay the symbols of the other nodes in coalition
Ck. Specifically, PCj is given by

PCj = max
[
0,min(P − PBj , P )

]
, (5)

with PCj =
∑

Si∈Ck,i̸=j PCi,j , and PCi,j is the cooperative power
node Sj utilizes in relaying node Si’s symbol xi to the destination.

B. Cooperation Phase

In the cooperation phase, each node Si for Si ∈ Ck, ∀Ck ∈ C
and |Ck| ≥ 2 in time-slot TN+1 forms a linearly-coded signal
Xi(t) of the |Ck|−1 received signals from the nodes in Ck, during
the broadcasting phase. For multiuser detection at the destination,
each decoded symbol xl at node Si is spread using a signature
waveform cl(t), where it is assumed that each node Si for i ̸= l
and the destination know the signature waveforms of all the other
nodes in the coalition. The cross-correlation of cl(t) and ci(t) is
ρl,i = ⟨cl(t), ci(t)⟩ , (1/Ts)

∫ Ts

0
cl(t)c

∗
i (t)dt for l ̸= i with ρi,i = 1

and Ts being the symbol duration. Therefore, the transmitted signal
by node Si is expressed as

Xi(t) =
∑

Sl∈Ck,l̸=i

√
PCl,ixlcl(t) (6)

The received signal at the destination—assuming perfect timing
synchronization—is written as

Yd(t) =

N∑
i=1

hi,dXi(t) + nd(t), (7)

where nd(t) is the AWGN process at the destination. By substitut-
ing (6) into (7), Yd(t) is re-written as

Yd(t) =

K∑
k=1

∑
Sl∈Ck

 ∑
Si∈Ck,i̸=l

√
PCl,ihi,d

xlcl(t) + nd(t). (8)

At the destination, multiuser detection is performed on Yd(t) to
extract each symbol xj of node Sj ∈ Ck, ∀Ck ∈ C. Specifically,
Yd(t) is passed through a matched filter bank (MFB), yielding

Yj,d = ⟨Yd(t), cj(t)⟩ =
K∑

k=1

∑
Sl∈Ck

αlxlρl,j + n̄j,d, (9)

where n̄j,d is a zero-mean AWGN noise sample with variance N0,
while αl is given by

αl =
∑

Si∈Ck,i̸=l

√
PCl,ihi,d. (10)

It is assumed that ρl,j = ρ, ∀l ̸= j. Thus, the decorrelated received
signal is obtained as [6]

Ỹj,d = αjxj + ñj,d, (11)

where ñj,d ∼ CN (0, N0ϱN ), and ϱN is given by

ϱN =
1 + (N − 2) ρ

1 + (N − 2) ρ− (N − 1) ρ2
. (12)

The received instantaneous SNR of node Sj’s symbol (where Sj ∈
Ck) at the destination is given by γj = γBP

j + γCP
j , where γBP

j is
expressed in (3), and γCP

j is obtained by passing Ỹj,d through a
matched-filter. Therefore, γj is obtained as [7]

γj =
PBj |hj,d|2

N0
+

∑
Si∈Ck,i̸=j

PCj,i |hi,d|2

N0ϱN
. (13)

Upon the completion of the broadcasting and cooperation phases,
the destination will have received |Ck| independent copies of
symbol xj of node Sj ∈ Ck and thus achieving a diversity order
of |Ck| [1].



V(Ck) =
{
υυυ(Ck) ∈ R|Ck| | ∀Sj ∈ Ck, υj(Ck) = RC

j,d ≥ 0, if PCj > 0, and υj(Ck) = −RD
j,d, otherwise.

}
. (17)

III. COALITION FORMATION FRAMEWORK

Let υj(Ck) denote the payoff of each node Sj in coalition Ck.
Based on the discussed system model, a singleton coalition of node
Sj occurs when it does not form a coalition with other nodes. In
this case, node Sj utilizes all its power P in transmitting its data
once every N + 1 time-slots. Thus, the payoff of node Sj is

υj({Sj}) = RD
j,d =

1

N + 1
log2

(
1 +

P |hj,d|2

N0

)
, (14)

where RD
j,d is the achievable rate with direct transmission. On the

other hand, for coalition Ck with |Ck| ≥ 2, the achievable rate of
node Sj due to the cooperative transmission is given by

RC
j,d =

1

N + 1
log2

1 +
PBj |hj,d|2

N0
+

∑
Si∈Ck,i ̸=j

PCj,i |hi,d|2

N0ϱN

 . (15)

Thus, the payoff of each node Sj in coalition Ck is given by
υj(Ck) = RC

j,d, and the value of a coalition Ck is given by
υ(Ck) =

∑
Sj∈Ck

υj(Ck). (16)

Definition 1: A coalition game is said to have a non-transferable
utility (NTU) if the coalition value cannot be arbitrarily apportioned
among its nodes and each node will have its own specific value
within a coalition.

Based on the proposed system model, the coalition game in hand
has a non-transferable utility, as a specific achievable rate for each
node in a coalition is achieved.

Definition 2: A coalitional game with non-transferable utility is
defined by a pair (S,V), where S is a finite set of N players, and
V is a set valued function such that for every coalition Ck ⊆ S ,
V(Ck) is a closed convex subset of R|Ck| that contains the payoff
vectors the players in Ck can achieve1.

In the proposed system model, V : Ck → R|Ck| such that V(ϕ) =
ϕ, and if Ck ̸= ϕ, then V(Ck) is non-empty and closed. Moreover,
the coalitional set-valued function V of a coalition Ck ⊆ S is
defined as given in (17), where PCj = 0 if and only if PBj = P ,
which implies that Sj has no interest in cooperation.

Remark 1: The proposed network-coded transmission model is
a coalitional game (S,V) in partition form with non-transferable
utility, where V(Ck) is a singleton set, as defined by (17), and is
thus a closed and convex subset of R|Ck|.

Remark 2: In the proposed NTU coalitional game (S,V), the
grand coalition rarely forms due to the target SNR power costs.

Based on the SNR target in (4), the power cost for coalition
formation depends on the distance between the network nodes,
which in turn governs coalitions’ sizes. As the size of a coalition in-
creases, the cooperative gain and power cost per node also increase.
However, the power saving due to the diversity gains gradually
diminish even with the increase in the number of cooperative nodes
in a coalition, at which point, no additional nodes should join the
coalition. This prevents the network nodes from forming a grand
coalition and instead form independent disjoint coalitions. In turn,
the proposed game is modeled as a coalition formation game, with
the aim of finding the network’s coalitional structure [8].

1The formulated coalition game is in the characteristic function form. That is,
utilities achieved by players in a coalition are unaffected by those outside it [8].

IV. DISTRIBUTED COALITION FORMATION ALGORITHM

In this section, the aim is to study how coalitions can be formed
in a distributed manner. Specifically, a coalition is formed if it is
beneficial to at least one node in the coalition and also for the
coalition as a whole. The nodes of a coalition can avoid merging
with other coalitions if they are as well off as a result of not
merging. Furthermore, when nodes form a coalition, they cannot
unilaterally deviate on their own. In turn, coalition structure changes
are determined by the members of a coalition interacting with one
another as a unit. Since network nodes are rational and autonomous,
the design of an iterative distributed algorithm to form a network
coalition structure that improves that network sum-rate is highly
desirable. But first, several concepts must be defined.

Definition 3: A collection of coalitions, denoted as C, is defined
as C = {C1, C2, . . . , CK} for 2 ≤ K ≤ N mutually disjoint
coalitions Ck of C. Equivalently, a collection is any arbitrary group
of disjoint coalitions Ck of C that does not necessarily span all
the players of S. If a collection spans all the players in S (i.e.∪K

k=1 Ck = S), the collection is a partition of S.
Definition 4: A preference operator ◃ is defined for comparing

two collections Q = {Q1, . . . , Ql}, and R = {R1, . . . , Rp} that
are partitions of the same subset A ⊆ S (i.e. same players in Q and
R). Thus, Q ◃R means that the way Q partitions A is preferred
to the way R partitions A.

In the coalitional game theory literature, comparison relations
based on orders are split into two categories [9]: individual value or-
ders and coalition value orders. In the former category, comparison
is performed on the basis of individual payoffs (e.g. Pareto order).
In the latter category, two collections (or partitions) are compared
based on the value of the coalitions inside these collections, such as
the utilitarian order (e.g. Q ◃R =⇒

∑l
i=1 υ(Qi) >

∑p
i=1 υ(Ri)).

In this work, the utilitarian order comparison relation is assumed as
it is more appropriate to the studied altruistic coalition formation.

There are two successive rules for forming and breaking coali-
tions, known as merge-and-split rules [9].

Definition 5 (Merge Rule): Merge any collection of disjoint
coalitions {Q1, . . . , Ql}, where {

∪l
k=1 Qk} ◃ {Q1, . . . , Ql}, thus

{Q1, . . . , Ql} → {
∪l

k=1 Qk}.
Definition 6 (Split Rule): Split any coalition {

∪l
k=1 Qk}, where

{Q1, . . . , Ql} ◃ {
∪l

k=1 Qk}, thus {
∪l

k=1 Qk} → {Q1, . . . , Ql}.
The merge-and-split rules simply mean that two (or more)

coalitions will merge if their merger would do more good than
harm to the overall coalition value (or equivalently, sum-rate) of
the merged coalition. Otherwise, coalitions will split into smaller
ones or even singletons.

A. Algorithm Description
The network operation starts at time-index τ = 0 with network

nodes being partitioned into singleton coalitions (i.e. Cj = {Sj}
for 1 ≤ j ≤ N such that C = {{S1}, {S2}, . . . , {SN}}) and each
node Sj determines its direct transmission rate RD

j,d. After that, the
following phases take place.

1) Node Discovery: Each node Sj ∈ S discovers the neigh-
boring potential nodes with which it can possibly merge using
PBj = P . Specifically, for each node Sj , the potential partners lie



within a circle with radius determined by the power P ≥ γN0d
ν
j,fj

required for symbols’ exchange while meeting the target SNR γ,
as given by (4). Thus, if the received signal at node Si satisfies
γ, it is considered to be decoded correctly. Let Dj be the set of
network nodes that decoded node Sj’s symbol correctly, i.e.

Dj = {∀Si ∈ S and i ̸= j : γBP
j,i ≥ γ}. (18)

After that, node Sj broadcasts a request-to-send (RTS) message
which is received by all the nodes in Dj . Then, each node Si ∈ Dj

replies to node Sj with a clear-to-send (CTS) message that contains
its CSI with the destination. If the decoding set of node Sj is empty
(i.e. Dj = ϕ), then it employs direct transmission and does not form
a coalition with any other node. Otherwise, node Sj enumerates all
the possible distinct coalitions of Sj∪Dj . In the case of a coalition
Ck, the potential nodes lie within the intersection of |Ck| circles,
each centered around node Sj ∈ Ck. Clearly, the node discovery
phase significantly reduces the coalition formation space.

2) Adaptive Coalition Formation: In this phase, the time-index
is updated to τ = τ + 1 and each node sequentially proposes
to merge with one of its potential partners. If such a merge
is desirable by all the nodes according to the utilitarian order,
then a coalition with one or more of the potential nodes could
form by a merge agreement of all the participating nodes. For
all merged coalitions, a random node is elected as a coalition-
head [10], which is responsible for periodically exchanging timing
information with the rest of the coalition. After that, the power
allocation fractions of each node are determined according to one
of the power allocation criteria discussed in Section V. After all the
nodes have made their merge decisions, the merge process ends,
resulting in partition Mτ = Merge(Cτ−1). If the sum-rate value
a group of nodes achieved by forming a coalition is less than
the value achieved before the merger, they split into singletons
or coalitions of smaller sizes. At the end of the split process,
a partition Cτ = Split(Mτ ) is obtained. A sequence of merge-
and-split processes along with time-index updates take place in a
distributed manner via appropriate control channels, depending on
the achievable rate improvement of each node and coalition, until
there is no need for any merging/splitting in the current partition,
in which case the final partition C∗ = Cτ is obtained.

3) Data Transmission: In this final phase, data transmission of
each node takes place in the form of broadcasting and cooperation,
over a total of N +1 time-slots and as described in Section II. Fi-
nally, the above three phases repeat in response to topology changes
or mobility. The network initialization and proposed merge-and-
split coalition formation algorithm are summarized in Table I.

It should be noted that the resulting partition from the proposed
merge-and-split algorithm is not guaranteed to be optimal (i.e. the
one that maximizes the network sum-rate) as the formed coalitions
do not exchange information about their values and thus have no
way of knowing whether there are different partitions that could
lead to better network sum-rate. Even if all coalition values are
known, no known algorithm can determine the optimal partition
with polynomial-time complexity [11].

V. IMPACT OF DIFFERENT POWER ALLOCATION CRITERIA

It is intuitive to note that network coalition formation is de-
pendent on the cooperative power allocation within each coalition.
Therefore, the following power allocation criteria are studied.

TABLE I
NETWORK INITIALIZATION AND PROPOSED DISTRIBUTED MERGE-AND-SPLIT

COALITION FORMATION ALGORITHM

Initial State:
At the beginning of all time, initialize time-index at τ = 0 with the
network being partitioned as C0 = {S1, S2, . . . , SN}.

Coalition Formation Algorithm:
Phase 1 - Node Discovery:

Each node determines its neighbors and potential coalitions.
Phase 2 - Adaptive Coalition Formation:

Coalition formation using merge-and-split rules occurs.
repeat

(a) Update time-index: τ = τ + 1.
(b) Mτ = Merge(Cτ−1): coalitions in Cτ−1 make merge

decisions based on the merge rule.
(c) Cτ = Split(Mτ ): coalitions in Mτ make split decisions

based on the split rule.
until merge-and-split terminates with final partition denoted C∗.

Phase 3 - Data Transmission:
Each node transmits its data symbol in the broadcasting phase
and the nodes within every coalition relay data for each other
during the cooperation phase.

A. Equal Power Allocation (EPA)

Under this criterion, a node Si ∈ Ck determines its maximum re-
quired broadcasting power as PBi = max{γN0/|hj,i|2}Sj∈Ck,j ̸=i

and then the cooperative power PCi = P−PBi is equally allocated
to the other nodes in Ck in the form of

(EPA) : PCj,i =
P − PBi

|Ck| − 1
, ∀Sj ∈ Ck, and j ̸= i. (19)

B. Sum-of-Rates Maximizing Power Allocation (SRM-PA)
The sum-of-rates maximizing power allocation problem of coali-

tion Ck is solved by the coalition-head and is expressed as
(SRM-PA): max

∑
Si∈Ck

RC
i,d

s.t. PBi +
∑

Sj∈Ck,j ̸=i

PCj,i ≤ P, ∀Si ∈ Ck, (20a)

PBi ≥ γN0/|hj,i|2, ∀Sj , Si ∈ Ck and j ̸= i, (20b)
PBi ≥ 0, ∀Si ∈ Ck, (20c)
PCj,i ≥ 0, ∀Sj , Si ∈ Ck and j ̸= i. (20d)

The first constraint in (20) enforces total power constraint, while
the second constraint ensures the target SNR is met ∀Si ∈ Ck. The
last two constraints impose non-negativity of the allocated power.

C. Max-Min Rate Power Allocation (MMR-PA)
The power allocation problem under the max-min rate fairness

criterion solved by the coalition-head is expressed as
(MMR-PA): max η

s.t. η −RC
i,d ≤ 0, ∀Si ∈ Ck, (21a)

PBi +
∑

Sj∈Ck,j ̸=i

PCj,i ≤ P, ∀Si ∈ Ck, (21b)

PBi ≥ γN0/|hj,i|2, ∀Sj , Si ∈ Ck and j ̸= i, (21c)

PBi ≥ 0, ∀Si ∈ Ck, (21d)

PCj,i ≥ 0, ∀Sj , Si ∈ Ck and j ̸= i. (21e)

The first constraint imposes max-min rates while the rest of the
constraints are as in problem (20). Problems SRM-PA and MMR-
PA can be verified to be convex [12] and thus can be solved
efficiently by any standard convex optimization algorithm [13].



TABLE II
SUMMARY OF THE NUMBER OF VARIABLES AND CONSTRAINTS FOR CENTRALIZED POWER ALLOCATION

Power Allocation Criteria Number of Variables Number of Constraints
Continuous Binary Max-Min Total Power Target SNR Coalitions

C-SRM-PA
With Coalition Formation N2

(
N
2

)
− N N(N − 1) FN

Without Coalition Formation N2

(
N
2

)
− N N(N − 1) −

C-MMR-PA
With Coalition Formation N2 + 1

(
N
2

)
N N N(N − 1) FN

Without Coalition Formation N2 + 1

(
N
2

)
N N N(N − 1) −

Therefore, solving such problems at a coalition-head should pose
no severe computational overhead.

Remark 3: Since the achievable rate of each node in a coalition
Ck is strictly monotonically increasing in the allocated power, the
total power constraint is always met (i.e. PBi +

∑
Sj∈Ck,j ̸=i PCj,i =

P, ∀Si ∈ Ck and ∀Ck ∈ C).

VI. CENTRALIZED POWER ALLOCATION AND COALITION
FORMATION

The centralized SRM-PA and MMR-PA criteria, namely the C-
SRM-PA and C-MMR-PA—with and without coalition formation
constraints—are formulated as mixed-integer nonlinear program-
ming (MINLP) problems. Let Ij,i be a binary variable defined as

Ij,i =

{
1 if nodes Sj and Si cooperate,
0 otherwise

. (22)

A. Sum-of-Rates Maximizing Power Allocation

The centralized sum-of-rates maximizing power allocation (C-
SRM-PA) with coalition formation is formulated as

(C-SRM-PA):

max 1
|S|+1

∑
Sj∈S log2

(
1+

PBj
|hj,d|2

N0
+
∑

Si∈S,i̸=j Ij,i
PCj,i

|hi,d|2

N0ϱN

)
s.t. PBi +

∑
Sj∈S,j ̸=i

Ij,iPCj,i ≤ P, ∀Si ∈ S, (23a)

PBi ≥ γN0Ij,i/|hj,i|2, ∀Si, Sj ∈ S and i ̸= j, (23b)

Ij,i − Ij,kIk,i ≥ 0, ∀Si, Sj , Sk ∈ S and i ̸= j ̸= k,
(23c)

PBi ≥ 0, ∀Si ∈ S, (23d)

PCj,i ≥ 0, ∀Si, Sj ∈ S and i ̸= j, (23e)

Ij,i ∈ {0, 1}, ∀Si, Sj ∈ S and i ̸= j. (23f)

As before, the first and second constraints impose the total power
and target SNR γ constraints are satisfied for the nodes forming
coalitions, respectively. The third constraint ensures that if a node
joins a coalition, then it must cooperative with all its members.
The last three constraints define the range of values each decision
variable can take.

B. Max-Min Rate Power Allocation
The centralized max-min rate power allocation (C-MMR-PA)

with coalition formation is formulated as
(C-MMR-PA): max η

s.t. η − 1

|S|+ 1
log2

1+ PBj |hj,d|2

N0
+

N∑
Si∈S,i̸=j

Ij,i

PCj,i |hi,d|2

N0ϱN

 ≤ 0,

∀Sj ∈ S,
(24a)

PBi +
∑

Sj∈S,j ̸=i

Ij,iPCj,i ≤ P, ∀Si ∈ S, (24b)

PBi ≥ γN0Ij,i/|hj,i|2, ∀Si, Sj ∈ S and i ̸= j, (24c)

Ij,i − Ij,kIk,i ≥ 0, ∀Si, Sj , Sk ∈ S and i ̸= j ̸= k,
(24d)

PBi ≥ 0, ∀Si ∈ S, (24e)
PCj,i ≥ 0, ∀Si, Sj ∈ S and i ̸= j, (24f)
Ij,i ∈ {0, 1}, ∀Si, Sj ∈ S and i ̸= j. (24g)

It should be noted that ignoring the coalition formation con-
straints under the C-SRM-PA and C-MMR-PA problems (see (23c)
and (24d)) results in power allocation without any coalitional
structure. In other words, if node Si cooperates with nodes Sj and
Sk, then nodes Sj and Sk do not necessarily have to cooperate. In
this case, nodes Si, Sj and Sk do not form a coalition2.

The formulated centralized optimization problems are in general
NP-hard and hence cannot be solved in polynomial-time complexity
[14][15]. This is because finding an optimal partition of a set
S requires iterating over all possible partitions [8], which grows
exponentially with the number of nodes in S, as given by the
well-known Bell number [16]. Moreover, the number of continuous
and binary variables for the C-SRM-PA problem can be verified to
be N2 and

(
N
2

)
, respectively. With respect to the C-MMR-PA

problem, an additional continuous variable is required for η along
with N max-min rate constraints. Moreover, N and N(N − 1)
constraints are required to enforce the total power and target
SNR constraints, respectively. The number of coalition formation
constraints FN can be determined for N ≥ 4 as FN = N · BN ,
where BN = (N − 2 + BN−1) and B3 = 1. For instance, for a
network of N = 10 nodes, the C-SRM-PA problem with coalition
formation requires 145 variables and 460 constraints. Therefore,
such problems can only be solved for very small-sized networks;
however, for large-sized networks, the computational complexity
becomes prohibitively high and is thus deemed impractical. The
total number of variables and constraints required for the centralized
power allocation is summarized in Table II.

2It is noteworthy that in this work, forming a coalition is defined such that the
users within the coalition are closed to cooperation from users outside the coalition.



VII. PARTITION STABILITY, CONVERGENCE AND COMPLEXITY

In this section, the partition stability, convergence and complexity
properties of the proposed distributed coalition formation algorithm
are studied.

A. Partition Stability
Stable coalition structures in coalition formation games corre-

spond to the equilibrium state in which users do not have incentives
to leave the already formed coalitions.

Definition 7 (C-Homogeneity): Given a partition C =
{C1, C2, . . . , CK}, a partition C̄ = {C̄1, C̄2, . . . , C̄L} is called
C−homogenous if for each j ∈ {1, . . . , L}, some i ∈ {1, . . . ,K}
exists such that either C̄j ⊆ Ci or Ci ⊆ C̄j [17].

Based on Definition 7, any C−homogenous partition arises from
C by allowing each coalition either to split into smaller coalitions
or to merge with other coalitions.

Definition 8 (Dhp(C) Function): For each partition C, Dhp(C)
is the family of all C−homogenous partitions in S [17]. Moreover,
Dhp(C) allows the players to leave the partition C only by means
of possibly multiple merges or splittings.

According to Definition 8, Dhp(C) associates with each partition
C of S the group of all partitions of S that the players can form
through merge-and-split processes applied to C.

Theorem 1 (Dhp-Stability): A partition is Dhp-stable if and only
if it is the outcome of iterating the merge-and-split rules [17].

Based on Theorem 1, to find a Dhp-stable partition, it suffices to
iterate the merge-and-split rules starting from any initial network
partition until partition C∗ is reached, in which case players have
no incentive to leave partition C∗ through merge-and-split to form
other partition in S.

Proposition 1: The resulting final partition C∗ of the proposed
coalition formation algorithm is Dhp-stable.

Proof: This is an immediate result of the fact that no players have
an incentive to leave partition C∗ through merge-and-split to form
other partitions in S. �

B. Convergence
Proposition 2: Each iteration of the merge-and-split rules termi-

nates [17].
Proposition 2 is a consequence of the fact that each iteration of

the merge-and-split rules improves the network sum-rate. In turn,
it guarantees that the proposed algorithm can converge.

Theorem 2: The coalition formation process based on the merge-
and-split rules converges to a stable partition C∗ [9].

Proof: Theorem 2 is proved by contradiction. Assume that the
resulting coalition partition is not the equilibrium one and the
final coalition partition is not formed yet. Then, at least two
coalitions that could merge to improve their value functions. Thus,
the coalition formation process must iterate through the merge-and-
split rules at least one more time until no two coalitions desire to
merge, in which case the final partition C∗ is reached. �

C. Communication and Computational Complexity
The communication complexity of the proposed algorithm is

related to the number of merge-and-split operations, which is
directly related to the total number of coalition formation proposals
P sent by each of the N nodes. Two extreme cases are considered:

(1) if all the proposals are rejected, and (2) if all the proposals are
accepted. In the first case and as described in Section IV-A, each
node Si ∈ S submits at most |Di| proposals, where |Di| ≤ N − 1.
Now, if the first node submits N − 1 proposals and the second
submits N − 2 proposals and so on, then the total number of
proposals is Pworst =

∑N−1
i=1 i = 1

2N(N − 1). Thus, in the
worst case, the complexity is of the order O(N2). In the second
case where all the proposals are accepted, the total number of
proposals is only Pbest = N , and a complexity order of O(N).
In practice, the number of proposals is between these two extreme
cases (i.e. Pbest ≤ P ≤ Pworst). In fact, the number of proposals
is much lower than 1

2N(N − 1) as the proposed algorithm tends
to merge the smaller coalitions first and then the bigger ones but
with reduced possibilities. Hence, if L messages are required per
coalition formation proposal, then L × P messages are required
until convergence of the algorithm.

An equally important factor into the operation of the distributed
merge-and-split algorithm is the computational complexity involved
in the cooperative power allocation. As for the EPA criterion, the
calculation of power allocation at each node is trivial (i.e. with
negligible computational complexity). As for the SRM-PA and
MMR-PA criteria, the computational complexity is dependent on
the number of nodes in each coalition (which defines the number
of variables and constraints). Despite the fact that such problems
are convex and can be computed efficiently, doing so repetitively
may impose significant overhead and delay to each coalition-head,
especially for potentially large coalitions. That is, it takes longer
to compute the sum-rate of a large coalition compared to a small
one. However, due to the associated power costs, most network
nodes tend to form coalitions of sizes less than N/2 even for dense
networks, under the different power allocation criteria (as will be
verified in the following Section).

VIII. SIMULATION RESULTS

In the following simulations, an ad-hoc network with N = 15
nodes is studied, where the node density varies with the square area
of deployment in m2, while the destination is located at the center
of the area. Moreover, the path-loss exponent is set to ν = 3, while
the correlation coefficient is ρ = 0.40. The total power constraint
per node is P = 0.15 W, while the noise variance is N0 = 10−5

W. The target SNR for information exchange is set to γ = 3 dB
[1]. The simulation results are averaged over 10000 independent
runs with the nodes randomly and uniformly distributed across the
deployment area for different network densities.
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Fig. 2. Network Sum-Rate of Different Power Allocation Criteria



It is evident from Fig. 2 that as the network density increases,
the network sum-rate under the different distributed and centralized
power allocation criteria also increases and is superior to that of
direct transmission (which is performed over N = 15 time-slots
with no cooperation phase). This is because with the increase
in network density for a fixed number of nodes, the deployment
area decreases and the possibility of finding cooperative partners
increases. Furthermore, the SRM-PA criterion achieves the highest
sum-rate among the other power allocation criteria. Also, the
centralized SRM-PA algorithm without coalition formation achieves
the highest network sum-rate among all distributed and centralized
power allocation criteria. Moreover, the computational complexity
of the centralized algorithms for network densities beyond 0.005
nodes/unit square area becomes extremely expensive3.
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Fig. 3. Average Number of Nodes Per Coalition and Number of Coalitions of
Distributed and Centralized Algorithms

From Fig. 3, it is clear that the SRM-PA criterion results in the
the highest average number of nodes per coalition. This is due
to the altruistic coalition formation and the fact that the SRM-PA
criterion yields the highest sum-rate. Hence, network nodes tend to
form larger coalitions under the SRM-PA criterion, which in turn
reduces the average number of coalitions formed.
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Fig. 4. Average Number of Iterations

In Fig. 4, the average number of iterations until convergence
of the proposed distributed merge-and-split algorithm under the
different power allocation criteria is shown. It can be seen that
SRM-PA criterion requires the largest number of iterations and
this is because under this criterion, network nodes tend to form
larger coalitions. Thus, in the proposed distributed merge-and-split
algorithm, larger potential coalitions are formed and then possibly
split, which in turn increases the number of iterations.

3The centralized MINLP power allocation problems are solved using MIDACO
[18] with optimization tolerance set to 0.01.
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Fig. 5. Percentage of Nodes Belonging to Each Coalition Size Under the Distributed
Algorithm - Network Density = 0.01 Nodes/Unit Square Area

Based on the histogram shown in Fig. 5, it can be seen that
a large portion of the nodes are participating in coalitions. Even
for the EPA criterion, where singletons are most prevalent, more
than half of the nodes are participating in coalitions of at least 2
nodes. As for the MMR-PA and SRM-PA criteria, more than half
of the nodes are in coalitions of 3 or more nodes, with the SRM-PA
criterion resulting in the largest coalitions.
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Fig. 6. Network Sum-Rate Under the Proposed Distributed Algorithm - EPA
Criterion with Time-Index and Coalition Size Constraints

Based on Fig. 4, the proposed merge-and-split algorithm
converge—for instance—under the EPA criterion in about 170
iterations. To allow the proposed algorithm to converge faster and
reduce the communication and computational complexities, the
algorithm time-index can be set to a maximum value of τmax. An
alternative method to speed up the convergence of the proposed
algorithm is to restrict the maximum coalition size to Cmax. Fig.
6 shows that by reducing the value of τmax without restricting
the coalition size (i.e. Cmax = 15), the degradation in the sum-
rate is insignificant, even for τmax = 50. Similarly, by reducing
the maximum coalition size without capping the algorithm time-
index (i.e. τmax = ∞), the sum-rate marginally degrades. In Fig.
7, the average number of iterations for different combinations of
time-index and coalition size restrictions is illustrated. Evidently,
such constraints significantly reduce the number of iterations at the
expense of negligible reduction in the network sum-rate.

Finally, Fig. 8 shows the percentage of nodes belonging to each
coalition size under the different constraints. It is evident that
decreasing the values of τmax and Cmax prevents large coalitions
from forming, which in turn increases the percentage of nodes
remaining as singletons and decreases the percentage of nodes
forming coalitions of larger sizes.
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IX. CONCLUSIONS

In this paper, the problem of altruistic coalition formation in
cooperative ad-hoc wireless networks is investigated. In particular,
a coalition game-theoretic framework is applied to the study of
distributed altruistic coalition formations to improve the overall
network sum-rate. In turn, a distributed merge-and-split algorithm
has been designed based on the utilitarian order and evaluated
under different power allocation criteria. It has been shown that the
proposed algorithm allows the network to self-organize into disjoint
coalitions and that the sum-of-rates maximizing power allocation
criterion results in the largest average coalition size and number of
nodes per coalition, among the different power allocation criteria.
Finally, the proposed algorithm yields a network sum-rate that is
comparable with that of centralized control; however, with less
computational complexity.
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