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Abstract

The problem of integrated process and control system design is discussed in this paper.
We formulate it as a mixed integer nonlinear programming problem subject to differential-
algebraic constraints. This class of problems is frequently non-convex and, therefore, local
optimization techniques usually fail to locate the global solution. Here we propose a global
optimization algorithm, based on an extension of the Ant Colony Optimization metaheuristic,
in order to solve this challenging class of problems in an efficient and robust way. The ideas
of the methodology are explained and, on the basis of different full-plant case studies, the
performance of the approach is evaluated. The first set of benchmark problems deal with the
integrated design and control of two different wastewater treatment plants, consisting on both
NLP and MINLP formulations. The last case study is the well-known Tennessee Eastman
Process. Numerical experiments with our new method indicate that we can achieve an im-
proved performance in all cases. Additionally, our method outperforms several other recent
competitive solvers for the challenging case studies considered.

Keywords: Integrated process and control system design, mixed integer nonlinear program-
ming (MINLP), metaheuristics, Ant Colony Optimization, Tennessee Eastman Process, oracle
penalty method.

1 Introduction

The general statement of the simultaneous (integrated) design and control problem takes into
account the process and control superstructures, indicating the different design alternatives.1–3

This general approach results in mixed integer nonlinear programming problems. The aim is to
simultaneously find the static variables of the process design as well as the operating conditions
and the controllers’ parameters which optimize a combined measure of the plant economics and
its controllability, subject to a set of constraints which ensure appropriate dynamic behavior and
process specifications. Here we will consider that the physical design of the plants are given and
the parameters to be optimized are related to operational and controllability issues. We state our
problem as follows:

min
v,b

C(z,v,b) =
∑

i

wi · φi (1)
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subject to

f(ż, z,p,v,b, t) = 0
x(t0) = x0

h(z,p,v,b) = 0
g(z,p,v,b) ≥ 0

vL ≤ v ≤ vU

bL ≤ b ≤ bU

(2)

where v ∈ Rncont and b ∈ Rnint are, respectively, the vector of continuous and integer (including
binary) decision variables (e.g., design variables, operating conditions, parameters of controllers,
set points, etc.); C is the cost (objective function) to minimize (normally a weighted combination
of capital, operation and controllability costs, φi); f is a functional for the system dynamics (i.e.,
the nonlinear process model); z is the vector of the states (and ż is its derivative); p is a set of
time-invariant parameters; t0 is the initial time for the integration of the system of differential
algebraic equations (and, consequently, z0 is the vector of the states at that initial time); h and g
are possible equality and inequality path and/or point constraint functions which express additional
requirements for the process performance; and, finally, vL and vU , bL and bU are the lower and
upper bounds for the decision variables. The dependence of φi upon the decision variables, v,b, is
defined by the problem formulation. In some cases this dependence is simple and straightforward
(i.e., when minimizing the cost of a chemical process, one of the φi can be equal to a reactor size,
which may also be a decision variable), whereas in others there might not be an explicit expression
for this dependence (i.e., φi can be the integral square error, ISE, of a controller which, in general,
does not depend explicitly on the decision variables).

Typically, most of the problems in engineering applications are highly constrained and exhibit non-
linear dynamics. These properties often result in non-convexity and multimodality. Furthermore,
in many complex process models some kind of noise and/or discontinuities (either due to numerical
methods, or to intrinsic properties of the model) are present. Therefore, there is a need of robust
global optimization solvers which can locate the vicinity of the global solution in a reasonable
number of iterations and handle noise and/or discontinuities.

Since some of the decision variables in these problems can have an integer or binary nature, the
formulation above results in a mixed integer nonlinear program (MINLP). In this paper we will
discuss a hybrid metaheuristic approach that was developed to solve complex non-convex mixed
integer optimization problems. Combining the robustness of an extended Ant Colony Optimization
framework with the precision of a mixed integer sequential quadratic programming algorithm, we
obtain a powerful global solver for general MINLP problems. The job of the ACO framework is
to locate the attraction basin of the global minimum and to start then the MISQP routine as
a local solver. In case the local solver is still not able to obtain the global minimum, the ACO
metaheuristic will be used again. This is done to improve the current solution by a new ACO
search process concentrated within the former located attraction basin.

This paper is structured as follows: the ACO framework used in this study, based on extensions
to a previous work4 is described in Section 2. A novel strategy to handle constraints (the robust
oracle penalty method) is presented in Section 3. Details on a set of novel heuristics included in
the algorithm’s design and on its implementation are provided in Section 4. Section 5 presents the
case studies considered in this work and provides numerical results for each of them. The paper
finishes with the associated conclusions.

2 The ant colony optimization framework

The original ACO metaheuristic was developed by Dorigo7 and was intended for combinatorial
optimization problems only. The ACO framework considered in this paper is based on an extended
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ACO methodology for continuous domains proposed by Socha and Dorigo.8 This methodology
works by the incremental construction of solutions regarding a probabilistic choice according to a
probability density function (PDF). In principle any function P (x) ≥ 0 for all x with the property:

∫ ∞

−∞
P (x) dx = 1 (3)

can act as a PDF. One of the most popular functions to be used as a PDF is the Gaussian function.
This function has some clear advantages like an easy implementation10 and a corresponding fast
sampling time of random numbers. On the other hand, a single Gaussian function is only able
to focus on one mean and therefore not able to describe situations where two or more disjoint
areas of the search domain are promising. To overcome this drawback and still taking advantage
of the benefits of the Gaussian function, a PDF Gi(x) consisting of a weighted sum of several
one-dimensional Gaussian functions gi

l(x) is considered for every dimension i of the original search
domain:

Gi(x) =
k∑

l=1

wi
l · gi

l(x) =
k∑

l=1

wi
l

1
σi
√

2π
e
− (x−µi

l)
2

2 σi 2 (4)

This function is characterized by the triplets (wi
l , σ

i, µi
l) that are given for every dimension i of

the search domain and the number of kernels k of Gauss functions used within Gi(x). Within this
triplet, w denotes the weights for the individual Gaussian functions for the PDF, σ represents the
standard deviations, and µ are the means for the corresponding Gaussian functions. The indices i
and l refer, respectively, to the i-th dimension of the decision vector of the MINLP problem and
the l-th kernel number of the individual Gaussian function within the PDF.

Since the triplets above fully characterize the PDF and, therefore, guide the sampled solution can-
didates throughout the search domain, they are called pheromones in the ACO sense and constitute
the biological background of the ACO metaheuristic presented here. Besides the incremental con-
struction of the solution candidates according to the PDF, the update of the pheromones plays a
major role in the ACO metaheuristic.

A good and obvious choice to update the pheromones is the use of information, which has been
gained throughout the search process. This can be done by using a solution archive SA in which
the so far most promising solutions are saved. In the case of k kernels, this can be done choosing an
archive size of k. Thus the SA contains k n-dimensional solution vectors sl and the corresponding
k objective function values.9

As the focus is here on constrained MINLPs, the solution archive SA also contains the correspond-
ing violation of the constraints and the penalty function value for every solution sl. In particular,
the attraction of a solution sl saved in the archive is measured regarding the penalty function
value instead of the objective function value. Details on the measurement of the violation and the
penalty function will be described in Section 3.

We now explain the update process for the pheromones which is directly connected to the update
process of the solution archive SA. The weights w (which indicate the importance of an ant and
therefore rank them) are calculated with a linear proportion according to the parameter k:

wi
l =

(k − l + 1)∑k
j=1 j

(5)

With this fixed distribution of the weights, a linear order of priority within the solution archive SA
is established. Solutions sl with a low index l are preferred. Hence, s1 is the current best solution
found, while sk is the solution of the lowest interest, saved in SA. Updating the solution archive
will then directly imply a pheromone update based on best found solutions. Every time that a new
solution (ant) is created and evaluated within a generation, its attraction (penalty function value)
is compared to the attraction of the solutions saved in SA, starting with the very best solution

3



s1 and ending up with the last one sk in the archive. In case that the new solution has a better
attraction than the j-th one saved in the archive, the new solution will be saved on the j-th position
in SA, and all solutions formerly taking the j-th till k − 1-th position will drop down one index
in the archive, discarding the solution formerly taking the last k-th position. As it is explained in
detail in the following lines, the solutions saved in SA define the deviations and means used for the
PDF. This way of updating the solution archive with better solutions leads automatically a positive
pheromone update. Note that a negative pheromone update (evaporation) is indirectly performed
as well by dropping the last solution sk of SA every time that a new solution is introduced in it.
Explicit pheromone evaporation rules are known8 but were not considered here provided to the
implicit negative update and for the sake of simplicity of the framework.

Standard deviations σ are calculated by exploiting the variety of solutions saved in SA. For every
dimension i, the maximal and minimal distance between the single solution components si of the
k solutions saved in SA is calculated. Then the distance between these two values, divided by the
number of generations, defines the standard variation for every dimension i:

σi =
dismax(i)− dismin(i)

#generation
dismax(i) = max{|si

p − si
q| : p, q ∈ {1, ..., k}, p 6= q}

dismin(i) = min{|si
p − si

q| : p, q ∈ {1, ..., k}, p 6= q}

(6)

For all k single Gaussian functions within the PDF this deviation is then used regarding the
corresponding dimension i. The means µ are given directly by the single components of the
solutions saved in SA:

µi
l = si

l (7)

The incremental construction of a new ant works as follows: a mean µi
l is chosen first for every

dimension i . This choice is done respectively to the weights wi
l . According to the weights defined

in (5) and the identity of µi
l and si

l defined in (7), the mean µi
1 has the highest probability to be

chosen, while µi
k has the lowest probability to be chosen. Second, a random number is generated

by sampling around the selected mean µi
l using the deviation σi defined by (6). Proceeding in this

way through all dimensions i = 1, ..., n, we create a new ant, which can be evaluated regarding its
objective function value and constraint violations in a next step.

So far, this algorithm framework does not differ from the one proposed by Socha,9 except that here
explicit rules for the pheromone parameter wi

l are given. The novel extension which enables the
algorithm to handle mixed integer search domains modifies the deviations σi used for the integer
variables and it is described in detail next.

To handle integer variables besides the continuous ones, as described above, a discretization of
the continuous random numbers (sampled by the PDF) is necessary. The main advantage of this
approach is the straightforward integration in the same framework described above. A disadvantage
is the missing flexibility in cases where for an integer dimension i all k solution components si

1,...,k

in SA share the same value. In this case, the corresponding deviations σi
1,...,k are zero regarding

the formulation in (6). As a consequence, no further progress in these components is possible, as
the PDF would only sample the exact mean without any deviation.

Introducing a lower bound for the deviation of integer variables helps to overcome this disadvantage
and enables the ACO metaheuristic to handle integer and continuous variables simultaneously
without any major extension in the same framework. For a dimension i that corresponds to an
integer variable, the deviations σi are calculated by:

σi = max
{

dismax(i)− dismin(i)
#generation

,
1

# generation
, (1− 1√

nint
)/2

}
(8)

With this definition, the deviations (according to the corresponding Gaussian functions for integer
variables) will never fall under a fixed lower bound of (1 − 1√

nint
)/2, determined by the number
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of integer variables nint considered in the MINLP problem formulation. For MINLPs with a large
amount of integers, this lower bound converges toward 0.5 and therefore ensures a deviation that
hopefully keeps the algorithm flexible enough to find its way through the (large) mixed integer
search domain. A small number of integer variables leads to a smaller lower bound, while for only
one integer variable this bound is actually zero. In case of a small amount of integer variables in the
MINLP, it is reasonable to think that the optimal combination of integers is found at some point
of the search progress and therefore no further searching with a wide deviation is necessary for the
integer variables. But even in the case of only one integer variable, with a corresponding absolute
lower bound of zero, the middle term ( 1

#generation ) in (7) ensures a not too fast convergence of the
deviation. Therefore, the calculation of the standard deviation σ for integer variables by (7) seems
to be a reasonable choice and is confirmed by the numerical results.

3 Robust oracle penalty method

Penalty methods are well known strategies to handle constraints in optimization problems. Here
we present a general penalty method based on only one parameter, named Ω. This parameter is
selected best equivalent or just slightly greater than the optimal (feasible) objective function value
for a given problem. As for most real-world problems this value is unknown a priori, the user
has to guess this parameter Ω at first. After an optimization test run, the quality of the chosen
parameter can be directly compared to the truly reached solution value. Due to this predictive
nature of the parameter it is called an oracle.

In order to apply this methodology to real-world problem, in which the actual value of the global
optimum is usually unknown, it is important that the method performs satisfactory even for bad
or unreasonable choices of Ω. Indeed, the method is constructed this way and numerical results
fortified its robustness. A detailed description of the development, robustness and performance
of the method can be found online6 or in Schlüter and Gerdts.5 Therefore, only the essential
mathematical formulation is given here.

The oracle method works with a norm-function over all violations of the constraints of an optimiza-
tion problem; this function is called a residual. Commonly used norm-functions are the L−1, L−2
or L −∞ norms. Here we assume the L − 1 norm as residual (see (9)). To simplify the notation
of the robust oracle method, we denote here with z := (x, y) the vector of all decision variables
without explicit respect to x and y, which are the vectors of continuous and integer variables in
the MINLP formulation, respectively. Such a vector z is called an iterate from now due to the
generality of the method. In case of ACO z represents an ant.

res(z) =
∑

|hi(z)| −
∑

min{0, gj(z)} (9)

where hi denote the equality constraints and gj the inequality constraints. The penalty function
p(z) is then calculated by:

p(z) =





α · |f(z)− Ω|+ (1− α) · res(z)− β , if f(z) > Ω or res(z) > 0

−|f(z)− Ω| , if f(z) ≤ Ω and res(z) = 0
(10)

where α is given by:
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α =





|f(z)−Ω|· 6
√

3−2
6
√

3
−res(z)

|f(z)−Ω|−res(z) , if f(z) > Ω and res(z) < |f(z)−Ω|
3

1− 1

2
√
|f(z)−Ω|

res(z)

, if f(z) > Ω and |f(z)−Ω|
3 ≤ res(z) ≤ |f(z)− Ω|

1
2

√
|f(z)−Ω|

res(z) , if f(z) > Ω and res(z) > |f(z)− Ω|

0 , if f(z) ≤ Ω

(11)

and β by:

β =





|f(z)−Ω|· 6
√

3−2
6
√

3

1+ 1√
#generation

· (1− 3 res(z)
|f(z)−Ω| ) , if f(z) > Ω and res(z) < |f(z)−Ω|

3

0 , else

(12)

Implementations of the oracle penalty method in Matlab, C/C++ and Fortran can freely be
downloaded6 together with some graphical illustrations and further readings.

4 The hybrid strategy - ACOmi

After explaining the background and extension of the ACO metaheuristic for general MINLP
problems, this section provides detailed information on our implementation, named ACOmi, which
combines this extended ACO metaheuristic with a deterministic local solver (MISQP11). In addi-
tion, several other heuristics are incorporated in ACOmi, that will appear in the presented pseudo-
code algorithm scheme and illuminated within this section. Our algorithm was implemented in
Matlab r©.

It is to note that the fitness (or attraction) of ants in ACOmi is measured according to their objective
function value in case of unconstrained problems. In case of constrained optimization problems
the penalty function introduced in Section 3 is applied as fitness criterion.

4.1 Novel heuristics

4.1.1 Dynamic population heuristic

In our algorithm, the number of ants used within every iteration (or generation) does not remain
constant during the optimization process, and it is calculated by a heuristic.

The calculation of the actual population size Popsize used for a given generation (#iteration) is
shown in Algorithm 1, where nants, dynmax and dynmean are parameters to be selected.

Here, nants is the minimum allowed population size of ants used within every generation. Thus,
the population size will never be smaller than nants. The actual population size will increase
and decrease in a linear matter over time and will reach its maximal size of dynmax ants in the
dynmean-th iteration. This is done to employ the ants in a more efficient way than it is done by
a constant population size. It is assumed that during the first algorithm stage (namely till some
iteration dynmean) the search process is most critical and the use of many ants is useful. Therefore,
the population size will be increased up to this stage. After reaching the dynmean-th generation it
will be immediately decreased about 50 percent and from there on it will be decreased in a linear
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Algorithm 1 Dynamic population heuristic
if #iteration ≤ dynmean then

Popsize = [ nants + (dynmax − nants) #iteration−1
dynmean−1 ]

else
if #iteration > dynmean and #iteration ≤ 2 · dynmean then

Popsize = [ dynmax + (nants − dynmax) #iteration
2 dynmean

]
else

Popsize = nants

end if
end if

matter till it reaches it minimum size of nants. The immediate reduction after the dynmean-th
generation is done to save a significant amount of function evaluations, as the first stage is seen
much more critical than the following ones. The population size is then decreased in a linear matter
and not dropped to nants immediately to assure a smoother change.

Figure 1 illustrates the population size Popsize during 150 iterations for parameters nants = 100,
dynmax = 500 and dynmean = 50. Regarding Algorithm 1, the population size will increase
and decrease in an asymmetric way with respect to the dynmean-th iteration. The algorithm
stage between the first iteration and the dynmean-th iteration is seen as the most important and
therefore more ants are employed during this stage. It must be noted that both, the calculation of
the population size and the parameter selection are of heuristic nature.

0 50 100 150
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Figure 1: Population size during 150 iterations.

4.1.2 Single dimension tuning heuristic (SDT)

This heuristic aims to improve the current best solution s1 saved in the solution archive SA by
only optimizing single variables out of its n components. Obviously this approach can easily lead
to small improvements for high-dimensional problems. The optimization of a single dimension
of the solution is done by randomly sampling around the current best known component of s1
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with a proper deviation. In case of mixed integer optimization problems this heuristic is partic-
ular interesting, because the algorithm can gain an additional flexibility in handling the integer
variables.

First, the treatment of dimensions that corresponds to continuous variables is explained. A new
ant xi

sdt will be created for every dimension i ≤ ncont by:

xi
sdt = si

1 +
(xi

u − xi
l) · xi

rand

#iteration
(13)

where xrand is a vector of dimension n whose component are uniform random number within the
interval [0, 1]. The variables range divided by the number of iterations performed so far, acts here
as a proper deviation. The integer variables are handled in a different way. According to a another
sampled uniform random number between zero and one, the current integer value is decreased or
increased by only one unit:

xi
sdt = si

1 +
{

1, if xi
rand ≥ 1

2
−1, if xi

rand < 1
2

(14)

In case that the current component si
1 has reached its lower or upper bound and the xi

sdt component
violates it, no change should be done for this component.

This procedure is performed in every iteration for every single dimension i, which leads to n ad-
ditional function evaluations per iteration. For MINLPs with a large number of variables, this
leads to a large amount of extra function evaluations. The experienced improvement of the algo-
rithm’s performance in a wide range of problems based on this heuristic, justifies this additional
computational cost.

4.1.3 Weighted average best ant heuristic (WABA)

It must be pointed out that this heuristic aims to create an improved solution by using all the
information captured so far in the solution archive SA. Out of the k solutions sl saved in SA, a
weighted average ant xwaba is created according to the previous described weights w:

xi
waba =

k∑

l=1

wi
l · si

l, (15)

where i refers to the dimension of the optimization variable. In case i refers to an integer vari-
able, the value of xi

waba is rounded to the next integer. This heuristic is very cheap in terms of
computational cost. No sampling of random numbers is required and only one additional function
evaluation has to be performed in every iteration.

4.1.4 Final stage heuristic

Our implementation ACOmi is able to detect a final stage of the algorithm progress by monitoring
the decline of the fitness of ants. This is measured by the objective function value in case of
unconstrained problems and by the penalty function (Section 3) in case of constrained ones. During
the whole progress, the difference between the fitness values of the so far best found ant in two
consecutive iterations is computed. The maximum and average value of these differences are called,
respectively, dcmax and dcaverage. The comparison of both values provides a final stage criterion.
In every iteration the progress of the algorithm is checked according to the relation between these
two values. This is done by calculating the following binary flag stagefinal ∈ {0, 1}, where a flag
stagefinal = 1 indicates the transition to final stage.

stagefinal =
{

1, if dcaverage < dcmax/Wfinal (Wfinal ∈ N+)
0, else (16)
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In (16) the parameter Wfinal acts as a weight to compare dcaverage with dcmax. In case that
dcaverage has become smaller than the weighted dcmax, no further extensive progress is expected.
Consequently the final stage flag stagefinal indicates this by becoming active.

If a final stage is detected by ACOmi, it will perform some local search actions. As ACOmi is a hybrid
implementation, it has the option to call a deterministic local solver. The local solver is then called
with the current best solution s1 saved in SA as initial point. In case the local solver is not able
to provide a feasible solution with an objective function value lower or equal to fex (which is a
desired (feasbile) objective function value, see Section 4.2), a restart with a population concentrated
around the current best solution s1 is performed. Therefore the pheromones are initialized again
with the means identical to the components of s1 and a very small deviation around them. The
complete solution archive SA will be cleared to avoid getting stuck again in the same solution s1,
even so the information of the best solution so far is represented in the pheromones. The hope
is to improve the solution by sampling very closely around the current best without keeping it as
a reference in the SA anymore and therefore biasing the solution hierarchy in SA. During this
second ACO based search process, the local solver will be called frequently. This means that, for
a given frequency freq ∈ N+, the local solver is called after every freq-th iteration.

4.2 Implementation scheme of ACOmi

The implementation is divided into two significant stages: ACOmain and ACOfinal. The algorithm
starts by initializing pheromones randomly. Then, the ACOmain stage performs a pure ACO search
process as described in Section (2). It must be noted that the number of ants per generation nants

is not fixed throughout the search process. The number of ants is calculated in every iteration
according to a heuristic (see Section 4.1.1). Within the ACOmain stage two additional heuristics
(SDT and WABA) are executed in every generation to improve the current best solution found by
the ants. At the end of every ACOmain generation, a stopping criterion is calculated by a binary
flag variable, stagefinal. This flag indicates the algorithm to switch to the ACOfinal stage. The
steps followed in this stage are explained in Section 4.1.4. A pseudocode of our implementation is
shown in Algorithm 2.

Three conditions act here as a stop criteria: (i) a maximal limit for function evaluations, (ii)
a maximal budget for computation time, and (iii) the achievement of a feasible solution with a
corresponding objective function value smaller or equal to the user-given value of fex. Those
criteria are checked after every iteration.

According to the parameter selection rules of thumb are given now. Note that those rules are
based solely on experience with ACOmi. A reasonable kernel size k has been found between 5 and
50. The minimum number of ants per generation nants, should be around two to ten times of the
kernel size k. The maximal amount of ants per generation dynmax should be around two to four
times of nants. The generation of maximal ants dynmean should be about a half to four times of
the kernel size k. As a reasonable weight Wfinal for the final stage stagefinal heuristic the value
100 was observed.

5 Integrated design and control case studies

In this section we consider a set of different integrated design and control problems of full industrial
plant of medium complexity. This set comprises both NLP and MINLP problems. To check their
practical multimodality, a multistart procedure using sequential quadratic programming (SQP)
optimization methods was applied to each of the problems considered. For a further comparison of
our ACOmi results, three additional solvers have been tested: MITS,12 SSm13 and CMAES.14 For
mixed integer problems, CMAES was not applied, because it is designed for continuous problems
only. All numerical results were calculated on a personal computer with a 3.2 GHz clock rate and
1 GB RAM working memory.
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Algorithm 2 ACOmi

Specify stopping criterion: Maximal evaluation budget evalmax

Maximal time budget timemax

Objective function value fex to be reached
Optional preliminary stage: Multistart of local solver with random initial points
Initialization: Choose pheromones (randomly)
Set stagefinal = 0
Set ACOfinal = 0
while stop criteria not met do

if stagefinal = 0 then
Construct dynamic population of Nants ants
Evaluate fitness of ants
Save k best ants in SA
Improve best ant with SDT heuristic and update SA
Calculate WABA and update SA
Update pheromones according SA
if ACOfinal = 0 then

Calculate final stage flag stagefinal

if stagefinal = 1 then
ACOfinal = 1

end if
else

Run local solver (frequently)
end if

else
Run local solver with s1 as initial point
stagefinal = 0
if stop criteria not met then

Choose pheromones (according to s1)
Clear SA

end if
end if

end while

5.1 WWTP COST model

5.1.1 Introduction

In order to enhance the development and acceptance of new control strategies, the International
Water Association (IWA) Task Group on Respirometry, together with the European COST work
group, proposed a standard simulation benchmarking methodology for evaluating the performance
of activated sludge plants. The COST 624 work group defines the benchmark as a protocol to
obtain a measure of performance of control strategies for activated sludge plants based on numerical,
realistic simulations of the controlled plant. According to this definition, the benchmark consists
of a description of the plant layout, a simulation model and definitions of (controller) performance
criteria. The layout of this benchmark plant combines nitrification with predenitrification by a five
compartment reactor with an anoxic zone (see Figure 2). A secondary settler composed by 10 layers
separates the microbial culture from the liquid being treated. A basic control strategy consisting
of 2 PI controllers is proposed to test the benchmark. Its aim is to control the dissolved oxygen
level in the final compartment of the reactor (AS Unit 5) by manipulation of the oxygen transfer,
and to control the nitrate level in the last anoxic compartment (AS Unit 2) by manipulating the
internal recycle flow rate.16

In this work, a Simulink r© implementation of the benchmark implemented by Dr. Ulf Jeppsson was
used for the simulations (for more information about the implementation, see Alex et al.,17 Copp18
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Figure 2: WWT.COST plant scheme

or Jeppsson and Pons19). Each function evaluation consists of an initialization period of 100 days
to achieve steady state, followed by a period of 14 days of dry weather and a third period of 14
days of rainy weather. Calculations of the controller performance criterion are based on data from
the last 7 rain days. A study comparing different global optimization methods, including surrogate
model-based methods for computationally expensive models, over this model, was recently carried
out by Egea et al.20

The system dynamics are described by algebraic mass balance equations, ordinary differential
equations for the biological processes in the bioreactors as defined by the ASM1-model,21 and the
double-exponential settling velocity function22 as a fair representation of the settling process. The
overall process is formed by 8 sub-processes and it is described by a set of more than 100 DAE’s
with 13 state variables. For the sake of brevity, the detailed model of the full plant as well as the
parameters and design variables values are not shown in this work, but they can be found in the
IWA Task Group on Benchmarking of Control Strategies for WWTPs web page∗.

Provided the physical design and the control strategy of the plant, there is a number of operating
variables over which we can apply optimization techniques to minimize a performance index of the
plant. In this work we have considered the ones listed in Table 1. Default values are proposed by
the benchmark authors.

Table 1: Operational variables for the WWT COST benchmark
Variable Description Symbol Default Units

value

v1 Proportional gain O2 controller K(O) 500 d−1(g(−COD)m−3)
v2 Integral time O2 controller τi(O) 0.001 d
v3 Antiwindup constant O2 controller τt(O) 0.0002 d
v4 Proportional gain N controller K(N) 15000 m3d−1(gNm−3)−1

v5 Integral time N controller τi(N) 0.05 d
v6 Antiwindup constant N controller τt(N) 0.03 d
v7 Aeration factor ASU1 KLa1 0 d−1

v8 Aeration factor ASU2 KLa2 0 d−1

v9 Aeration factor ASU3 KLa3 240 d−1

v10 Aeration factor ASU4 KLa4 240 d−1

v11 External recycle flow rate Qr 18446 m3d−1

v12 Purge flow rate Qw 385 m3d−1

v13 Settler input layer (integer variable) Lfeed 5 -

∗http://www.ensic.inpl-nancy.fr/benchmarkWWTP/Bsm1/Benchmark1.htm
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For the optimization of this model, convergence curves will be plotted with respect to the number
of simulations instead of the computation time. The reason is that, for some simulations, the
numerical integration fails producing an algebraic loop which can spend severals hours of compu-
tation time. Besides, the overhead introduced by every optimization method can be considered
negligible compared to the time needed for each simulation.

5.1.2 WWT.COST.1

In a first approach, we will try to optimize the control performance of the plant, tested by using the
ISE (Integral Square Error). Both the nitrate level and oxygen level controllers will be optimized
with respect to their controller parameters, that is, the gain K (i.e., v1 and v4) and integral time
constant τi (i.e., v2 and v5). The problem is formulated as follows:

min J(v) = c ·WT · ISE (17)

subject to the system dynamics. WT ∈ R1×2 contains the weighting coefficients and ISE ∈ R2×1

contains the integral squared errors of the two PI controllers. The weighting vector WT , the
integral square error, ISE, and the decision variables vector are as follows:

WT = [w1 w2] =
[
1000
1001

1
1001

]
(18)

ISE =
[

ISEO

ISEN

]
(19)

ISE(.) =
∫ tf

t0

ε (τ)2(.) dτ (20)

v =
[

vO

vN

]
=




K(O)

τi(O)

K(N)

τi(N)


 (21)

The weighting vector is chosen such that the ISEO equals to the ISEN part when using the
benchmark default settings provided by the COST project.18 Boundaries on the decision variables
(vL and vU ) are chosen such that the process dynamics would not show (exceptional) unstable
behavior:

vL = [100 7.0 · 10−4 100 1.0 · 10−2]T (22)
vU = [1000 7.0 · 10−1 50000 1.0]T (23)

The objective function values are normalized with respect to the performance obtained with the
tuned controller settings provided by the COST project (i.e., default value of Table 1) using the
constant parameter c = 1.1845 · 103 to obtain a function value equal to one when using default
values for the decision variables.

The histogram (in log-scale) depicting the multistart procedure to check the non-convexity of the
problem is shown in Figure 3. Due to the high computational cost of every simulation, the number
of initial points used in the multistart procedure was only 40.

The histogram shows the practical non-convexity of the problem and that the best value reported
(f(x) = 0.7463) outperforms the value obtained with default parameters but not the solutions
obtained applying global optimization methods, as shown below.

Table 2 lists the parameters of ACOmi used for all test runs on this application together with a
brief explanation and reference information. In Table 3 the best (fbest), worst (fworst) and mean
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Figure 3: Histogram of solutions obtained from the multistart procedure for WWT.COST.1

(fmean) objective function values, obtained by each solver throughout 10 test runs, are reported.
In addition the mean number of function evaluations (evalmean) and the corresponding cpu-time
(timemean) in seconds are also given. We assigned a maximal budget of 400 simulations (function
evaluations) as a limit for every test run, but we did not declare a maximal time budget. All test
runs started from the same initial point, which can be found together with the lower and upper
bounds in Table 10 (see Appendix). Table 10 also shows the optimal vector (x∗) obtained by all
tested solvers.

Table 2: ACOmi parameter setup for WWT.COST.1
parameter value explanation reference
k 5 number of kernels = size of SA Section 2
nants 10 number of ants Section 4.1.1
dynmax 20 maximal number of ants Section 4.1.1
dynmean 5 number of iteration for dynmax Section 4.1.1
Wfinal 100 weight for stagefinal Section 4.1.4
freq 3 frequency for local solver Section 4.1.4

Table 3: Results for the WWT.COST.1
solver fbest fworst fmean evalmean timemean

MITS 0.7433 2.6579 1.3798 421 36979
ACOmi 0.5273 0.7568 0.5528 426 32352

CMAES 0.5313 1.8751 0.7690 402 27926
SSm 0.5354 0.8013 0.6309 415 33240

Analyzing the results on this application ACOmi was able to obtain the best overall objective
function value and also the best mean objective function value. While SSm performed slightly
better than CMAES, MITS was clearly the worst solver on this application.
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To illustrate the convergence rate of the tested solvers, Figure 4 displays (in log-log-scale) the
convergence curves corresponding to the best run for each solver.
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Figure 4: Convergence curves of best runs of MITS, SSM, CMAES and ACOmi for WWT.COST.1

5.1.3 WWT.COST.2

After having tested the different optimization algorithms over the COST benchmark model, the
next step is to pose a more complicated problem in terms of design and therefore in terms of number
of decision variables. The new formulated objective function will be more complex and will take
into account not only controllability aspects but also the process economy. The selected decision
variables for this extended problem will be, appart from the controllers parameters chosen in the
previous section, the aeration factors of the aerated tanks (i.e., KLa3 and KLa4), the external
recycling flow rate, Qr, and the sludge purge flow rate, Qw. The new optimization problem is
formulated as follows:

min C(v) = w1 · φcont + w2 · φecon (24)

where φcont is the same term defined in Equation 17. φecon takes into account the different terms
which define the operating costs of the process, such as effluent quality, EQ, aeration and pumping
energies, AE and PE, and the amount of sludge for disposal, Psludge. Vanrolleghem and Gillot23

defined particular economic costs derived from each of these indexes. Based on the relations among
these costs, we have defined φecon as:
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φecon = 2 · EQ + AE + PE + 3 · Psludge (25)

w1 and w2 are chosen for both terms, φcont and φecon, to be in the same order of magnitude when
using the default values for the decision variables. As in the previous section, the optimization
problem is subject to the system dynamics and the bounds for the decision variables. For the
controllers parameters we use the same bounds as in the previous case (i.e., equations 22 and
23). Upper bounds for these new considered decision variables were chosen taking into account
the recommendations of the benchmark authors, whereas the lower bounds were chosen to avoid
systematic numerical integration errors along the optimizations. These bounds, together with the
initial point used for the optimizations are shown in Table 11 (see Appendix).

The histogram (in log-scale) depicting the multistart procedure to check the non-convexity of the
problem is shown in Figure 5. The number of initial points used was also 40 for the same reasons
given in the last section.
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Figure 5: Histogram of solutions obtained from the multistart procedure for WWT.COST.2

The histogram shows the practical non-convexity of the problem and the best value reported by
the multistart (f(x) = 35521) does not improve the value obtained using default values for the
decision variables (f(x) = 35225).

Table 4 lists the parameters of ACOmi used for all test runs on this application together with a
brief explanation and reference information. In Table 5 the best (fbest), worst (fworst) and mean
(fmean) objective function values, obtained by each solver throughout 10 test runs, are reported.
In addition the mean number of function evaluations (evalmean) and the corresponding cpu-time
(timemean) in seconds are also given. We assigned a maximal budget of 800 simulations (function
evaluations) as a limit for every test run, but we did not declare a maximal time budget. All test
runs started from the same initial point, which can be found together with the lower and upper
bounds in Table 11. Table 11 also shows the optimal vector (x∗) obtained by all tested solvers.
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Table 4: ACOmi parameter setup for WWT.COST.2
parameter value explanation reference
k 30 number of kernels = size of SA Section 2
nants 100 number of ants Section 4.1.1
dynmax 300 maximal number of ants Section 4.1.1
dynmean 50 number of iteration for dynmax Section 4.1.1
Wfinal 100 weight for stagefinal Section 4.1.4
freq 3 frequency for local solver Section 4.1.4

Table 5: Results for WWT.COST.2
solver fbest fworst fmean evalmean timemean

MITS 34167 39411 36596 893 95877
ACOmi 33678 35228 34994 970 257610

CMAES 34852 37561 35531 802 88369
SSm 33993 36652 34794 853 103750

Analyzing the results on this application SSm and ACOmi obtained the best solutions amongst the
four tested solvers. While the best ACOmi of 33678 was slightly better than the one achieved by
SSm of 33993, the mean objective function value of SSm was slightly better than those of ACOmi.

To illustrate the convergence rate of the tested solvers, Figure 6 displays (in log-log-scale) the
convergence curves corresponding to the best run for each solver.
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Figure 6: Convergence curves of best runs of MITS, SSM, CMAES and ACOmi for WWT.COST.2
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5.1.4 WWT.COST.3

In addition to the above NLP formulation of the WWT COST benchmark operational design
problem, an extension of the previous problem is proposed here. In this case, all the variables
shown in Table 1 will be used as decision variables. Some of the bounds are extended to allow
a possible change of the plant configuration (e.g., the anoxic tanks could became aerated and
vice-versa, changing from a pre-denitrification plant to a post-denitrification plant). The objective
function used will be the same as in the previous problem. For the sake of comparison with a
previous work by Exler et al.,12 the initial point used for this case will be the default one provided
by the benchmark authors, and shown in Table 1.

The histogram (in log-scale) depicting the multistart procedure to check the non-convexity of the
problem is shown in Figure 7. The number of initial points used was also 40 and the local solver
used for this case was MISQP.
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Figure 7: Histogram of solutions obtained from the multistart procedure for WWT.COST.3

The histogram shows the practical non-convexity of the problem and the best value reported by the
multistart (f(x) = 44937) is very far from the value obtained using default values for the decision
variables (f(x) = 35225).

Table 6 lists the parameters of ACOmi used for all test runs on this application together with a
brief explanation and reference information. In Table 7 the best (fbest), worst (fworst) and mean
(fmean) objective function values, obtained by each solver throughout 10 test runs, are reported.
In addition the mean number of function evaluations (evalmean) and the corresponding cpu-time
(timemean) in seconds are also given. We assigned a maximal budget of 1500 simulations (function
evaluations) as a limit for every test run, but we did not declare a maximal time budget. All test
runs started from the same initial point, which can be found together with the lower and upper
bounds in Table 12 (see Appendix). Table 12 also shows the optimal vector (x∗) obtained by all
tested solvers.

Analyzing the results on this application ACOmi outperformed the other solvers in terms of the best,
worst and mean objective function value. In particular the worst ACOmi solution is still better than
the best ones of MITS and SSm. MITS and SSm achieved a similar mean objective function value
while the best SSm result is significantly better than the one of MITS.

To illustrate the convergence rate of the tested solvers, Figure 8 displays (in log-log-scale) the
convergence curves corresponding to the best run for each solver.
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Table 6: ACOmi parameter setup for WWT.COST.3
parameter value explanation reference
k 5 number of kernels = size of SA Section 2
nants 15 number of ants Section 4.1.1
dynmax 50 maximal number of ants Section 4.1.1
dynmean 15 number of iteration for dynmax Section 4.1.1
Wfinal 100 weight for stagefinal Section 4.1.4
freq 0 frequency for local solver Section 4.1.4

Table 7: Results for WWT.COST.3
solver fbest fworst fmean evalmean timemean

MITS 34296 34296 34296 1828 71580
ACOmi 32544 32874 32694 1512 161460
SSm 33104 35226 34471 1500 160643
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Figure 8: Convergence curves of best runs of MITS, SSm and ACOmi for WWT.COST.3

5.2 Tennessee Eastman Process

Since the publication of the Tennessee Eastman process (TEP) example by Downs and Vogel,24

it has been widely used in the literature as a benchmark due to its challenging properties from a
control engineering point of view: it is highly nonlinear, open-loop unstable and it presents a large
number of measured and manipulated variables which offer a wide set of candidates for possible
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control strategies. The flow sheet for the TEP is depicted in Figure 9. Two products (G and
H ) are produced from four reactants (A, C, D and E ). A further inert trace component (B) and
one byproduct (F ) are present. The process units consist of a continuous stirred tank reactor, a
condenser, a flash drum, a compressor and a stripper. The gaseous reactants are fed to the reactor
where they are transformed into liquid products. The following reactions take place in gas phase:

A(g) + C(g) + D(g) → G(l)

A(g) + C(g) + E(g) → H(l)

A(g) + E(g) → F(l)

3D(g) → 2F(l)

(26)

These reactions are irreversible and exothermic with rates that depend on temperature through
Arrhenius expressions and on the reactor gas phase concentration of the reactants. The reaction
heat is removed from the reactor by a cooling bundle. The products and the unreacted feeds pass
through a cooler and, once condensed, they enter a vapor-liquid separator. The non condensed
components recycle back to the reactor feed and the condensed ones go to a product stripper in
order to remove the remaining reactants by stripping with feed stream. Products G and H are
obtained in bottoms. The inert (B) and the byproduct (F ) are mainly purged from the system as
a vapor from the vapor-liquid separator.

Recently, Antelo et al.25 applied their systematic approach to a plant-wide control design developed
in a previous work26 to derive robust decentralized controllers for the Tennessee Eastman Process.
In this framework, the TEP is represented as a process network. Then, conceptual mass and energy
inventory control loops for each node are designed first to guarantee that the states of the plant will
remain on a convex invariant region, where the system will be passive and therefore input output
stability can be stated.26 The next step is to realize the proposed conceptual inventory control loops
using the physical inputs-outputs of the process. Some extra control loops are needed to achieve
the convergence of the intensive variables since the inventory control by itself does not ensure the
convergence of these variables to a desired operation point. In some cases, the available degrees of
freedom are not enough to implement the complete control structure that ensures both extensive
and intensive variables convergence to the reference values. As a consequence, the setpoints of
the inventory controllers can be used as new manipulated variables to complete the decentralized
control design.

We explain the alternatives we introduced to extend the original hierarchical control design pro-
posed by Antelo et al.25 Concerning the reactor level control loop in the original design, its set
point modifies the reference for the flow controller acting over E feed. As an alternative for clos-
ing this loop, both D as well as A+C feeds are proposed as alternative manipulated variables.
The other feed present in the TEP (A Feed) is not considered to close this loop since one of the
disturbances defined by Downs and Vogel24 is a total loose of this stream (IDV6).

For the reactor pressure case, the original proposal by Antelo et al.25 considers the condenser
cooling water flow as the manipulated variable. By using this, the reactor pressure can be varied
since the separator pressure and, as a consequence, the recycle rate can be modified. It is at this
point where the control over the vapor mass inventory in the separator by using the purge rate is
established in order to ensure that all inventories in the TEP will remain bounded and, therefore,
input-output stability is guaranteed. As alternatives,we are considering here:

1. The purge flow, which is a manipulated variable widely used in the literature for the reactor
pressure control loop. By modifying this, it is possible to regulate the separator pressure
as well as the recycle flow, and therefore the reactor pressure. When this alternative is
considered, an extra loop controlling the separator temperature (energy inventory) by acting
over the condenser coolant flow is defined.

2. The recycled flow, which can be modified by manipulating the compressor recycle valve.
As a result, the gaseous reactor feed will vary and, therefore, also the reactor pressure.

3. The A+C Feed, which is the largest gaseous feed in the TEP and, as a consequence, it can
be a candidate to regulate the pressure in the reactor, as presented in the work by Luyben
et al.27
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In order to determine the best control alternative among the proposed ones, a new binary vector
b is added to our system dynamics. These 0-1 variables express which of the control strategies is
being used, and they are defined as follows:

x(37) ≡ b1 ∈ {0, 1} (Condenser Cooling F low)
x(38) ≡ b2 ∈ {0, 1} (Purge Rate)
x(39) ≡ b3 ∈ {0, 1} (E Feed)
x(40) ≡ b4 ∈ {0, 1} (D Feed)
x(41) ≡ b5 ∈ {0, 1} (A + C Feed for pressure loop)
x(42) ≡ b6 ∈ {0, 1} (A + C Feed for level loop)
x(43) ≡ b7 ∈ {0, 1} (Recycle Rate)

(27)

Therefore, the original control design proposal by Antelo et al.25 will be characterized by the vector
b = (1, 0, 1, 0, 0, 0, 0)T since it uses E Feed to control the reactor level and the condenser coolant
flow to control the reactor pressure. From all the exposed, the optimization problem consists now
on solving the following MINLP of the form:

min
v,b

J(z,v,b)

s.a.

f(ż, z,p,v,b, t) = 0
h(z,p,v,b) = 0
g(z,p,v,b) ≥ 0
b1 + b2 + b5 + b7 = 1
b3 + b4 + b6 = 1
1− b5 − b6 ≥ 0
vl ≤ v ≤ vu

bl ≤ b ≤ bu

(28)

where b ∈ {0, 1}7 is the vector of binary variables (0-1 variables) and v ∈ R36 are the continuous
variables (the controller parameters). The lower and upper bounds for the binary variables will be
of the form bl = (0, ..., 0)T and bu = (1, ..., 1)T . It must be pointed out that we are considering that
only one of the alternatives for each loop can be active at one time, being necessary to introduce
the additional linear constraints b1 + b2 + b5 + b7 = 1 and b3 + b4 + b6 = 1 . The linear constraint
1− b5 + b6 ≥ 0 ensures that only one (or no one) of the alternatives b5 or b6 is active at the same
time. The rest of the decision variables are connected to the tuning of the PI controllers.

Note that the MINLP is also subject to the dynamics (DAEs) of the system which are expressed
by f in Eq. (28). The TEP has 171 DAEs (30 ODEs and 141 algebraic equations). The MINLP is
also made up of the following constraints which are related with the reactor pressure, temperature
and volume, and with the separator and the stripper volumes:

Pr ≤ 3000 KPa

2 m3 ≤ VLr ≤ 24 m3

Tr ≤ 175 ◦C

1 m3 ≤ µLs ≤ 12 m3

1 m3 ≤ µLv ≤ 6 m3

(29)

The objective function proposed by Downs and Vogel24 in the TEP definitions is based on the
operating costs and can be defined as follows:

TC = PC · PR + PrC · PrR + CC · CW + SC · SR

TC = 7.5973 $
kmol · PC + 0.1434 $

kmol · PrR + 0.0536 $
kWh · CW + 0.0318 $

kg · SC
(30)
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where TC are the total operating costs at the base case, PC and PR are the purge costs and purge
flowrate, respectively. Similarly, PrC, CC and SC are the costs associated to the product stream,
compressor and steam, and PrR, CW and SR are the product rate, the compressor work and the
steam rate, respectively.

Operating costs for this process are primarily determined by the loss of raw materials (in the purge,
in the product stream and by means of the two side reactions). Economic costs for the process
are determined by summing the costs of the raw materials and the products leaving in the purge
stream and the product stream, and using an assigned cost to the amount of F formed. The costs
concerning the compressor work and the steam to the stripper are also included. Note that the
objective function used in the MINLP formulation will be the mean of these operating costs along
the whole simulation time horizon. For this work, this simulation time horizon was set to t = 10
h. This is enough time for stabilization of the TEP. After all these considerations concerning the
objective function, the problem can be represented as an MINLP of the form (28):

v ∈ R36, b ∈ {0, 1}7
minJ(x, v, b) = Total Operating Costs at Base Case
v0 − 0.5v0 ≤ v ≤ v0 + 0.5v0

(31)

The lower and upper bound for the decision variables have been set to be the ±50% of the initial
value for the decision vector. The reason for this selection is to avoid as much as possible the
saturation problems that can be exhibited by the valves. These situations have been detected
in preliminary dynamic simulations when considering a value of ±100% of v0 as bounds for the
decision vector.

Figure 9: The Tennesee Eastman Process Flowsheet

The histogram depicting the multistart procedure to check the non-convexity of the problem is
shown in Figure 10. The number of initial points used was 100 and the local solver used for this
case was MISQP.

The histogram shows the practical non-convexity of the problem and the best value reported by
the multistart (f(x) = 135.97) is far from the best value of 84.19 obtained by ACOmi (see Table
9). Out of the 100 MISQP executions with random initial points only 41 converged to a feasible
solution. In total the multistart of MISQP required 66518 function evaluations.
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Figure 10: Histogram of solutions obtained from the multistart procedure for TEP

Table 8 lists the parameters of ACOmi used for all test runs on this application together with a brief
explanation and reference information. In case of this application we assumed two independent
ACOmi setups regarding the oracle parameter Ω, which is used to evaluate the fitness of ants
according to the penalty function (see Section 3). Those two setups were named ACOmiΩ1 and
ACOmiΩ2 regarding their oracle parameter. It is to note that, except the oracle parameter, all other
parameters were set identical between ACOmiΩ1 and ACOmiΩ2 as listed in Table 8.

In Table 9 the best (fbest), worst (fworst) and mean (fmean) objective function values, obtained
by each solver throughout 10 test runs, are reported. In addition the mean number of function
evaluations (evalmean) and the corresponding cpu-time (timemean) in seconds are given. We assigned
a maximal budget of 10000 simulations (function evaluations) as a limit for every test run, but we
did not declare a maximal time budget. All test runs started from the same initial point, which
can be found together with the lower and upper bounds in Table 13 (see Appendix). Table 13 also
shows the optimal vector (x∗) obtained by all tested solvers.

Table 8: ACOmiΩ1 and ACOmiΩ2 parameter setup for the TEP
parameter value explanation reference
k 15 number of kernels = size of SA Section 2
nants 150 number of ants Section 4.1.1
dynmax 500 maximal number of ants Section 4.1.1
dynmean 10 number of iteration for dynmax Section 4.1.1
Wfinal 100 weight for stagefinal Section 4.1.4
freq 10 frequency for local solver Section 4.1.4
Ω1 100 Oracle for penalty method Section 3
Ω2 1012 Oracle for penalty method Section 3

Table 9: Results for the TEP
solver fbest fworst fmean evalmean timemean

ACOmiΩ1 84.19 152.51 112.65 10636 6593.59
ACOmiΩ2 147.57 148.72 148.06 10113 9843.04
MITS 147.951 149.015 148.484 19309 10435.8
SSM 147.547 148.82 147.991 21822 10857.8
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Comparing the performance of MITS, SSm and ACOmiΩ2 , no significant difference can be noticed,
all three solver achieved a mean solution objective function value about 148. Analyzing the re-
sults of ACOmiΩ1 on this constrained problem, the importance of the oracle parameter Ω for this
constrained problem is striking. The ACOmi performance was dramatically increased be applying a
reasonable guess of the oracle parameter of 100, leading to solution objective function values about
84. Interestingly the ACOmiΩ1 setup also provided the worst objective function value of all tested
solvers. Nevertheless the mean objective function value obtained by ACOmiΩ1 is around 112 and
much better than the ones of MITS, SSm and ACOmiΩ2 .

To illustrate the convergence rate of the tested solvers, Figure 11 displays (in log-log-scale) the
convergence curves corresponding to the best run for each solver and setup.
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Figure 11: Convergence curves of the best runs of MITS, SSm, ACOmiΩ1 and ACOmiΩ2 , respectively
to the obtained solution objective function value for TEP

Conclusions

We presented an extension of the Ant Colony Optimization metaheuristic enabling the methodology
to handle mixed integer variable search domains. Furthermore we introduced a new penalization
strategy which can be applied in the extended ACO framework to face constraint optimization
problems. A detailed explanation of the hybrid implementation ACOmi, incorporating the extended
ACO framework and robust oracle penalty method, was given before results on four case studies
were presented.
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The results on the case studies fortify the success of our new approach for the integrated de-
sign and control of nonlinear dynamic models of medium complexity. On every case study ACOmi
outperformed the rest of compared solvers. In particular the difference in the solution quality ob-
tained by ACOmi and the concurrent solvers was significantly on the two mixed integer applications
(WWT.COST.3 and TEP). Furthermore the results on the last case study (TEP) illustrate the
high potential of the introduced oracle penalty method.
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6 Appendix

Detailed information on lower and upper bounds, initial and best vectors are given here for the
considered case studies of Section 5.

Table 10: Information on bounds, initial and best vectors for WWT.COST.1
variable lower bound upper bound initial value x∗MITS x∗ACOmi x∗CMAES x∗SSm

K(O) 100 1000 750.62 896.77 514.75 517.88 378.49
τi(O) 0.0007 0.7 0.5069 0.0021 0.0007 0.0007 0.0007
K(N) 100 50000 27831 24657 20763 20370 18865
τi(N) 0.01 1 0.0932 0.0292 0.0270 0.0274 0.0247

objective function value 35.91 0.7433 0.5273 0.5313 0.5354

Table 11: Information on bounds, initial and best vectors for WWT.COST.2
variable lower bound upper bound initial value x∗MITS x∗ACOmi x∗CMAES x∗SSm

K(O) 100 1000 955.12 625.72 619.42 1000.0 671.32
τi(O) 0.0007 0.7 0.1623 0.0026 0.0013 0.0007 0.0007
K(N) 100 50000 303810 13195 19014 28487 20167
τi(N) 0.01 1 0.4911 0.0161 0.0283 1.0000 0.0279
KLa3 160 360 338.26 220.11 173.78 172.46 202.41
KLa4 160 360 312.42 197.12 213.16 229.26 211.24
Qr 0.0001 36892 222750 11913 18701 14647 18605
Qw 100 1844.6 132.28 243.68 390.71 286.51 404.04

objective function value 119430 34167 33678 34852 33993
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Table 12: Information on bounds, initial and best vectors for WWT.COST.3
variable lower bound upper bound initial value x∗MITS x∗ACOmi x∗SSm

K(O) 100 1000 500 499.950 571.902 522.714
τi(O) 0.0007 0.7 0.001 0.00096 0.00149 0.00253
τt(O) 0.0001 0.7 0.0002 0.00020 0.00025 0.18933
K(N) 100 50000 15000 14998.0 24897.5 14366.0
τi(N) 0.01 1 0.05 0.04994 0.03388 0.04563
τt(N) 0.0001 0.07 0.03 0.02999 0.00011 0.03336
KLa1 0 360 0 0.00178 0.19231 0
KLa2 0 360 0 0.01972 35.3000 71.0659
KLa3 0 360 240 240.020 132.393 126.026
KLa4 0 360 240 239.920 216.948 183.455
Qr 0 36892 18446 18444.0 16382.9 10315.7
Qw 0 1844.6 385 385.100 351.598 199.944
Lfeed 1 10 5 8 7 7

objective function value 35225 34296 32544 33104
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Table 13: Information on bounds, initial and best vectors for TEP
variable lower bound upper bound initial value ACOmiΩ1 ACOmiΩ2 MITS SSM
1 0.0005 0.0015 0.00141 0.0014 0.00141 0.00116 0.00142
2 0.0015 0.0045 0.00191 0.00151 0.00336 0.00217 0.00359
3 9e-011 2.7e-010 2.01e-010 9e-011 9e-011 2.01e-010 1.98e-010
4 10 30 15.4 30 22.4 16.2 16.6
5 3.5e-007 1.05e-006 5.04e-007 8.97e-007 7.15e-007 6.44e-007 6.52e-007
6 0.0002 0.0006 0.000485 0.000446 0.000262 0.000592 0.000525
7 0.002 0.006 0.0042 0.00317 0.00386 0.00511 0.00378
8 1.6 4.8 4.61 4.8 1.6 1.6 1.97
9 -0.03 -0.01 -0.0234 -0.0193 -0.0298 -0.0172 -0.0152
10 -0.075 -0.025 -0.0398 -0.0339 -0.025 -0.0348 -0.0434
11 5 15 14.4 5.18 9.8 12.6 8.12
12 -0.00015 -5e-005 -9.18e-005 -5e-005 -0.000112 -5.65e-005 -7.54e-005
13 -0.048 -0.016 -0.0198 -0.027 -0.0186 -0.0185 -0.0355
14 0.00045 0.00135 0.00112 0.000681 0.00135 0.00105 0.000925
15 0.000625 0.00187 0.0011 0.00128 0.00187 0.00187 0.00187
16 -12 -4 -6.2 -10.7 -12 -7.63 -8.06
17 50 150 66.3 120 94.6 93.5 101
18 16 48 46.6 19.9 48 44.6 39.5
19 23 69 32 32.9 68 37.2 25.2
20 8.33e-006 2.5e-005 2.13e-005 1.53e-005 9.24e-006 1.32e-005 8.33e-006
21 8.33e-006 2.5e-005 1.86e-005 2.24e-005 1.08e-005 1.27e-005 8.88e-006
22 2.08 6.25 2.76 4.05 2.51 6.22 5.41
23 0.833 2.5 0.885 0.833 1.57 1.64 1.67
24 2.08 6.25 3.29 2.08 2.08 3 4.1
25 8.33e-006 2.5e-005 2.45e-005 8.33e-006 2.42e-005 1.86e-005 1.5e-005
26 8.33e-006 2.5e-005 2.42e-005 8.66e-006 1.13e-005 2.06e-005 1.42e-005
27 1 3 1.46 1.13 2.88 2.09 2.11
28 0.167 0.5 0.486 0.387 0.263 0.403 0.223
29 1.67 5 3.93 2.4 1.67 2.1 3.75
30 0.00833 0.025 0.00925 0.025 0.0229 0.0201 0.0184
31 0.167 0.5 0.367 0.167 0.192 0.452 0.198
32 0.833 2.5 1.49 2.04 1.11 1.49 1.81
33 4.68 14.1 6.7 14 4.68 5.19 9.27
34 12.5 37.5 17.1 33.8 14.2 12.5 12.5
35 0.0625 0.188 0.0721 0.137 0.188 0.117 0.179
36 4.17 12.5 4.23 11.5 11.3 8.67 5.93
37 0 1 1 0 1 1 1
38 0 1 0 1 0 0 0
39 0 1 1 0 1 1 1
40 0 1 0 1 0 0 0
41 0 1 0 0 0 0 0
42 0 1 0 0 0 0 0
43 0 1 0 0 0 0 0
objective function value: 159.330 84.190 147.570 147.950 147.540
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