
MIDACO on MINLP Space Applications

Martin Schlueter
Division of Large Scale Computing Systems, Information Initiative Center,

Hokkaido University, Sapporo 060-0811, Japan

{info@midaco-solver.com}

Sven O. Erb
European Space Agency (ESA), ESTEC (TEC-ECM),

Keplerlaan 1, 2201 AZ, Noordwijk, The Netherlands

{sven.erb@esa.int}

Matthias Gerdts
Institut fuer Mathematik und Rechneranwendung, Universität der Bundeswehr,

München, D-85577 Neubiberg/München, Germany

{matthias.gerdts@unibw.de}

Stephen Kemble
Astrium Limited, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2AS, United Kingdom

{Stephen.KEMBLE@astrium.eads.net}

Jan-J. Rückmann
School of Mathematics, University of Birmingham, Birmingham B15 2TT, United Kingdom

{j.ruckmann@bham.ac.uk}

November 15, 2012

Abstract

A numerical study on two challenging MINLP space applications and their optimization
with MIDACO, which is a recently developed general purpose optimization software, is pre-
sented. The applications are in particular the optimal control of the ascent of a multiple-stage
space launch vehicle and the space mission trajectory design from Earth to Jupiter using mul-
tiple gravity assists. Additionally an NLP aerospace application, the optimal control of an
F8 aircraft manoeuvre, is furthermore discussed and solved. In order to enhance the opti-
mization performance of MIDACO a hybridization technique, coupling MIDACO with a SQP
algorithm, is presented for two of the three applications. The numerical results show, that
the applications can be solved to their best known solution (or even new best solutions) in a
reasonable time by the here considered approach. As the concept of MINLP is still a novelty
in the field of (aero)space engineering, the here demonstrated capabilities are seen as promising.

Keywords: MIDACO, MINLP, NLP, SQP, Hybrid Optimization, Space Applica-
tion.

1

1 Introduction

In this contribution the optimization of space applications via a mixed integer nonlinear program-
ming (MINLP) approach is presented. A mathematical formulation of a general MINLP is given in
(1), where f(x, y) denotes the objective function to be minimized. In (1), the equality constraints
are given by g1,...,me(x, y) and the inequality constraints are given by gme+1,...,m(x, y). The vector
x contains the continuous decision variables and the vector y contains the discrete decision vari-
ables. Furthermore, some box constraints as xl, yl (lower bounds) and xu, yu (upper bounds) for
the decision variables x and y are considered in (1).

Minimize f(x, y) (x ∈ Rncon , y ∈ Znint , ncon, nint ∈ N)

subject to: gi(x, y) = 0, i = 1, ...,me ∈ N
gi(x, y) ≥ 0, i = me + 1, ...,m ∈ N
xl ≤ x ≤ xu (xl, xu ∈ Rncon)

yl ≤ y ≤ yu (yl, yu ∈ Nnint)

(1)

Considering both, continuous and integer optimization variables, and without any assumptions
(like convexity or differentiability) on the objective function or constraints, MINLP problems are
one of the most general and most difficult types of optimization problems. Due to this generality,
a wide range of applications can be modelled as MINLP with an intriguing additional potential in
contrast to purely continuous or discrete formulations. While MINLP research is well established
in academic areas like chemical engineering (see Kocis and Grossmann [5]) and gaining more and
more attention in other areas (e.g. Bio-Informatics, see Maria et. al. [6]), its adaption to space
and aerospace applications remain very small so far to the best knowledge of the authors.

This papers presents a numerical study on three challenging (aero)space applications that are solved
by the global optimization software MIDACO, which was recently developed for general MINLP
problems. Taking advantage of the MINLP capabilities of MIDACO, the two space applications
are formulated as MINLP. Those space applications are in particular the optimal control of a
multiple-stage launch vehicle (based on a Delta III rocket by The Boing Company) and the design
of an interplanetary space mission trajectory from Earth to Jupiter (based on the Galileo mission
from 1989 by NASA) and. In case of the space mission application planetary multi-gravity assist
manoeuvrers are considered, whereas the flyby planet candidates imply discrete decision variables
to be optimized. In case of the launch vehicle application the model is extended by some discrete
decision variables, which express different booster configuration scenarios. Additionally to the
MINLP space applications the optimal control of an F8 aircraft [8] manoeuvre (formulated as
NLP) is presented here. In order to further enhance the performance of the stochastic MIDACO
algorithm, a hybridization approach of MIDACO with a deterministic local SQP algorithm is
proposed in three out of the two applications.

Note that furthermore to the mathematical model descriptions given here, the numerical imple-
mentations of the proposed applications (not including the MIDACO and SQP software) can be
freely downloaded at http://midaco-solver.com/applications.html.

This paper is structured as follows: Firstly, a brief introduction on the MIDACO software and
its hybridization with a SQP algorithm is given in Section 2.1. Secondly, numerical results by
MIDACO on the above mentioned space and aerospace applications are presented and compared
to available reference solutions in Section 3, Section 4 and Section 5. Finally, some conclusions are
drawn.

2

http://midaco-solver.com/applications.html

2 MIDACO Software

This section provides a brief introduction to MIDACO, which stands for Mixed Integer Distributed
Ant Colony Optimization. The MIDACO software implements a global optimization algorithm
for black-box MINLP problems based on an extended ant colony optimization algorithm (see
[10] and [11]) coupled with the oracle penalty method (see [12]) for constraint handling. The
software is available in several programming languages (in esp. Fortran, C/C++ and Matlab) and
comprehensive information as well as a free test version are available at the MIDACO homepage
[9]. A recent numerical study of MIDACO on 100 MINLP benchmark problems (see [13]) reveals
the strength of the software compared to other established MINLP solvers.

Here the relevant algorithmic parameters for MIDACO, that appear in this contribution are listed
together with a brief description.

Seed - Initial seed for internal pseudo random number generator within MIDACO. The Seed
determines the sequence of pseudo random numbers sampled by the generator. Therefore
MIDACO runs using an identical Seed, will produce exactly the same results (executed
on the same computer under identical compiler conditions). As the Seed may be an arbitrary
integer greater or equal to zero, the user can easily generate (stochastically) different
runs, using a different Seed parameter. The advantage of a user specified random seed is,
that promising runs can easily be reproduced by knowing the applied Seed parameter. This
is in esp. useful, if a run must be stopped out of some reason and should be restarted again.

Qstart - This parameter allows the user to specify the quality of the starting point. If
Qstart is set greater than 0, the initial population of iterates (also called ants)
is sampled closely around the starting point. In particular, the standard deviation
for continuous variables is set to |xl − xu|/Qstart and the mean is set to
the corresponding dimension of the starting point. For integer variables the
standard deviation is set to max{|yl − yu|/Qstart, 1/

√
Qstart}

to avoid a too tight sampling. The greater Qstart is selected, the more
closely does MIDACO search around the starting point. This option is very
useful to refine previously calculated solutions. It is important to note,
that this option does not shrink the search space. The original bounds
xl, yl and xu, yu are still valid, only the initial population of ants
is specifically focused within these bounds.

Autostop - This parameter activates an internal stopping criteria for MIDACO. While it is
recommended, that the user will run MIDACO for a fixed time or evaluation
budget, this option allows the software to stop the optimization run by itself.
Autostop defines the amount of internal restarts in sequence, that did not reveal
an improvement in the objective function value. The greater Autostop is selected,
the higher the chance of global optimality, but also the longer the optimization run.
As Autostop can be selected any integer greater or equal to zero, it gives the user
the freedom to compromise between global optimality and cpu run time to his or her
specific needs.

Oracle - This parameter specifies a user given oracle parameter Ω [12] to the penalty function
within MIDACO. If Oracle is selected not equal to zero, MIDACO will use the Oracle
as long as a better feasible solution has been found. This option can be useful for problems
with difficult constraints where some background knowledge on the problem exists.

3

2.1 Hybridization with SQP

In Section 3 and Section 5 MIDACO has been used in a coupled approach together with an
SQP algorithm for NLP (in esp. SQP-Filtertoolbox available from Prof. Gerdts, http://www.
unibw.de/lrt1/gerdts/software). The most straight forward approach was applied for the
hybridization, which is the splitting of the optimization process into two separate phases: First
MIDACO is applied on the original MINLP problem using the lower bounds (xlower, ylower) as
starting point, second SQP is applied on the MINLP problem with fixed integer variables using
the best solution revealed by MIDACO as starting point. The mathematical formulation of the
MINLP problem (1) with fixed integer variables is given in 2.

Minimize fy(x) (x ∈ Rncon),

subject to: gyi (x) = 0, (i = 1, ...,me),

gyj (x) ≥ 0, (j = me + 1, ...,m),

xl ≤ x ≤xu, (xl, xu ∈ Rncon : xl ≤ xu), y ∈ Znint .

(2)

Note that in Equation 2 the integer decision variables y from MINLP (1) are considered as pa-
rameters and not as optimization variables. The concrete values for y are given by the solution
of the MINLP (1) revealed by MIDACO, while the SQP algorithm only optimizes the continuous
variables x.

3 Multiple-Stage Launch Vehicle Ascent Problem

The ascent of a multiple-stage launch vehicle is considered here. The model is based on a Delta
III rocket (The Boeing Company) and was originally introduced by Benson [1]. In its original
(continuous) formulation, the model is used as a benchmark in the open literature Huntington [3]
and in well known optimal control software packages like GPOPS [7].

Here, the original model as given in GPOPS [7] is extended by additional mixed integer decision
variables and nonlinear constraints, creating a challenging mixed integer multi stage optimal control
problem. While in the original formulation the type and number of strap on boosters used for
the rocket propulsion is fixed, those two engineering design aspects are formulated as discrete
decision variables here. It can be shown, that by introducing those additional degrees of freedom,
significant improvements in the objective function can be gained in comparison to the original
model. Additionally incorporated constraints on the maximal dynamic pressure for the vehicle
and a virtual financial budget (based on the type of strap on boosters employed) ensure, that the
feasible solutions are still reasonable.

The objective in this application is to maximize the remaining fuel of the vehicle while maneuvering
it from the ground to a low earth target orbit. In the following, the model formulation in GPOPS [7]
is closely followed while the above mentioned extensions are especially highlighted in an individual
subsection.

Note that the implementation of this application discussed in the following can be downloaded at
http://midaco-solver.com/applications.html.

3.1 Vehicle Properties

The launch vehicle consists of two main stages and contains nine strap-on solid rocket boosters.
The flight of the vehicle to its target orbit can be divided into four different phases. The first flight
phase considers the vehicle on the ground at time t0. The main engine and a number of boosters

4

http://www.unibw.de/lrt1/gerdts/software
http://www.unibw.de/lrt1/gerdts/software
http://midaco-solver.com/applications.html

ignite (the concrete number of boosters is considered an optimization variable here). At time t1
the number of boosters ignited at t0 are depleted and the remaining dry mass is jettisoned. In the
following second flight phase, the remaining strap-on boosters ignite and are depleted at time t2.
The third flight phase does only consider propulsion by the main engine of the vehicle stage 1. The
fourth flight phase begins when the main engine fuel is finished and the dry mass associated with
the main engine is ejected at time t3. During flight phase four only the main engine of the vehicle
stage 2 is used for propulsion. The flight phase four ends at time t4, when the vehicle reaches the
desired low earth target orbit. Note that the solid boosters and main engine burn for their entire
duration (meaning t1, t2, and t3 are fixed), while the second stage engine is shut off when the target
orbit is achieved, therefore t4 is an optimization variable. The mass and propulsion properties of
the two vehicle stages are taken from GPOPS [7] and listed in Table 1.

Table 1: Vehicle mass and propulsion properties
Stage 1 Stage 2

Total Mass (kg) 104380 19300
Propellant Mass (kg) 95550 16820
Engine Thrust (N) 1083100 110094

Specific Impulse (sec) 301.7 467.2
Number of Engines 1 1

Burn Time (sec) 7261 700

Dynamic Model

The equations given in 3 express the Cartesian coordinates (earth-centered) of a non-lifting mass
point in flight over a spherical rotating planet

ṙ = v,

v̇ = − µ

‖r‖3
+
T

m
u+

D

m
,

ṁ = − T

g0Isp
,

(3)

where r = (x, y, z)′ is the (earth-centered) Cartesian position of the mass point, r = (vx, vy, vz)
′

is the velocity, µ is the gravitational parameter, T is the vacuum thrust, m is the mass, g0 is the
acceleration due to gravity at sea level, Isp the specific impulse of the engine, u = (ux, uy, uz)

′ is
the thrust direction and D = (Dx, Dy, Dz)

′ is the drag force. The drag force is defined as

D = −1

2
ρSCD‖vrel‖vrel , (4)

where CD is the drag coefficient, S is the reference area, ρ is the atmospheric density and vrel is
the earth relative velocity, where vrel is given as

vrel = v − Ω× r, (5)

where Ω is the angular velocity of the earth relative to the inertial reference frame. The atmospheric
density is modelled as the exponential function

ρ = ρ0e
−h
H , (6)

where ρ0 is the atmospheric density at sea level, h = ‖r‖ −Re is the altitude, Re is the equatorial
radius of the earth and H is the density scale height. Table 2 contains the numerical values for
the constants used in the vehicle model.

5

Table 2: Constants used in the launch vehicle model
Constant Value

Payload mass (kg) 4164
S (m2) 4 π
CD 0.5

ρ0 (kg/m3) 1.225
H (m) 7200
t1 (sec) 75.2
t2 (sec) 150.4
t3 (sec) 261
Re (m) 6378145

Ω (rad/s) 7.29211585 × 10−5

The launch vehicle starts on the ground at rest (relative to the earth) at time t0, so that the earth
centered initial conditions are

r(t0) := r0 = (RecosΦ0, 0, ResinΦ0)′,

v(t0) := v0 = Ω× r0,
m(t0) := m0 = 301454(kg),

(7)

where Φ0 = 28.5◦ and corresponds to the geocentric latitude of Cape Canaveral (Florida) and it
is arbitrarily assumed that the inertially fixed axes are such that the initial inertial longitude is
zero. The terminal constraints define the target geosynchronous transfer orbit, which is defined in
terms of orbital elements as

af = 24361.14 km,
ef = 0.7308,
if = 28.5◦,
Ωf = 269.8◦,
ωf = 130.5◦,

where a is the semimajor axis, e is the eccentricity, i is the inclination, Ω is the inertial longitude of
the ascending node and ω is the argument of perigee. The true anomaly v is considered free, as no
location in the terminal orbit is specified as constraint. Besides the primary constraint of reaching
the terminal orbit, a state path constraint keeps the altitude of the vehicle above the earth surface
and is given as

|r| ≥ Re, (8)

where Re is the equatorial radius of the earth. In contrast to the original model formulation in
GPOPS [7], no equality path constraint of the form

‖u‖2 = u2x + u2y + u2z = 1 (9)

is necessary here, because the Pitch and Yaw system is applied to control the vehicle that inherently
satisfies the above equality path constraint. The transformation from Pitch (Ψ) and Yaw (Φ) to
the cartesian thrust direction u = (ux, uy, uz)

′ is given by

ux = cos(Ψ)cos(Θ),

uy = cos(Ψ)sin(Θ),

uz = sin(Ψ),

(10)

where Ψ ∈ [−π, π] and Θ ∈ [−π2 ,
π
2]. The model further contains linkage constraints between the

different phases regarding the position r, the velocity v and the mass m of the vehicle. Those
linkage constraints are active at the end of phases 1,2 and 3 and the start of phases 2, 3 and 4,

6

respectively as

r(p)(tf)− r(p+1)(t0) = 0,

v(p)(tf)− v(p+1)(t0) = 0,

m(p)(tf)−m(p)
dry −m

(p+1)(t0) = 0,

(11)

where the subscript (p) denotes the phase number (in esp. p = {1, 2, 3}) and t0 and tf denote the
start and final time points of the corresponding phase. The linkage constraints force the position r
and velocity v to be continuous regarding the phase transition. The linkage constraint on the mass

m(p) at each of the phase interfaces corresponds with an instantaneous drop of the dry mass m
(p)
dry

of the particular phase (p). Therefore the mass trajectory is not continuous at the stage interfaces,
when mass is ejected. Here, mass drops at the ends of phases 1,2 and 3, when the dry mass of the
strap-on boosters or the first main stage is depicted. In contrast to the original formulation of the
model in GPOPS [7], the amount of dry mass associated with the strap-on boosters dropped at
the ends of phases 1 and 2 depends on the number of boosters chosen, which is an integer decision
variable (see Subsection 3.2).

The objective of the problem is to find an optimal control (and corresponding trajectory) that
maximizes the remaining mass of the vehicle at the end of phase 4. This objective is expressed as
minimization of the cost functional J given as

J = −m(4)(tf), (12)

subject to the above defined conditions and constraints.

3.2 Mixed Integer Extensions

The launch vehicle model is extended by some discrete decision variables regarding the number
and type of strap-on boosters used. While in the original formulation in GPOPS [7] the number
of strap-on boosters is considered fixed (6 booster for phase 1 and 3 booster for phase 2), here
the number of strap-on booster applied in the first phase is a decision variable and denoted by
B1 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The number B2 of strap-on booster applied in the second phase
is then recursively computed by B2 = 9 − B1 and therefore not considered a decision variable.
Further to the number of boosters applied, also the type of booster is considered to be variable
here. For simplicity and practical relevance the selection of booster types is restricted to phase 1
and 2. Hence, all boosters of phase 1 or 2 are assumed to be of the same type. Based on the type
of strap-on booster defined in the original formulation, four new types are generated. Those four
new types do vary in 10 and 25 percentage respectively to the properties of the original booster
defined in GPOPS [7]. Table 3 lists all five possible strap-on booster types with their properties.
Note, that in Table 3 the booster type 3 corresponds to the original booster considered in GPOPS
[7].

Table 3: Abbreviations for Table
Type Thrust Power (N) Mass Total (kg) Mass Propellant (kg) Cost

1 471375 14468 12758 0.75
2 565650 17361 15309 0.90
3 628500 19290 17010 1.00
4 691350 21219 18711 1.10
5 785625 24113 21263 1.25

Table 3 also introduces a new property for the five considered booster types. This is a virtual cost
which is based on the original strap-on booster. Hence the cost for booster type 3 is defined as
1.00 while the costs for all other boosters correspond with their 10 or 25 percentage property in-
or decrease. The here introduced cost property of the booster types is later used to define some
financial constraint that restricts the feasible choice of boosters.

7

3.3 Additional Constraints

Additional constraints are considered here. This is a maximal dynamic pressure constraint which
ensures, that the dynamic pressure on the launch vehicle never exceeds 50.000 N/m2. This con-
straint is to ensure that the choice of boosters implies a reasonable dynamic pressure behavior that
does not damage the space vehicle. The dynamic pressure constraint is given by

1

2
P ||v||2 ≤ 50000, (13)

where P is the atmospheric pressure calculated as

P = 1.249512 e−
||r||
6900 . (14)

A further constraint is introduced as maximal financial budget regarding the type of strap-on
boosters. The maximal available budget is considered here as 9, which is based on the original
model formulation applying 9 boosters of type 3 (which has cost 1 as listed in Table 3). The
financial budget constraint is formulated as

B1T1 +B2T2 ≤ 9, (15)

where B2 = 9 − B1 is the number of strap-on boosters used in the second phase. Last, a vertical
take-off constraint is imposed which ensures, that the vehicle launches vertical during the first five
seconds of its flight. This constraint is considered a security procedure that increases the realistic
relevance of the launch vehicle start. The vertical take-off constraint is imposed as a fixed control
ū = (ūx, ūy, ūz)

′ during the first five seconds of phase 1, where ū is given by

ū =
r

||r||
. (16)

3.4 Numerical Results

To solve the above described (mixed integer multi stage) optimal control problem, an reduced
direct approach is followed, where a Runge Kutta method of order 2 is applied to integrate the
ordinary differential equations 3. A discretization of 15 grid points is applied in each of the four
flight phases, which is identical to the number of grid points used in GPOPS [7]. The resulting
MINLP has then 128 decision variables, where 3 of them are discrete (this is B1, T1, T2; see Table
4), and 127 constraints, where 5 of them are equality constraints defining the target orbit. The
integer complexity of the MINLP is 250 (10× 5× 5).

A hybrid optimization strategy is implemented. This strategy first applies MIDACO to search
the MINLP formulation on the full mixed integer search domain for a fixed time budget. In a
second step, an SQP algorithm (in esp. SQP-Filtertoolbox available from Prof. Gerdts, http:
//www.unibw.de/lrt1/gerdts/software) is applied, using the solution given by MIDACO as
initial starting point. For the SQP method the 3 discrete decision variables are fixed to the values
given by the MIDACO solution, hence the SQP is applied only on the continuous search domain
of the problem and considered a refinement technique for the MIDACO solution. More details on
the hybridization of MIDACO and SQP can be found in Section 2.1.

Before optimizing the full MINLP an investigation on the impact of the discrete decision variables
is performed. Table 5 presents the best known results for the launch vehicle problem in respect
to different combinations of discrete variables that have been fixed. Only feasible combinations
with B1 ≥ 6 are considered in Table 5. For integer combinations with B1 = 9 results are only
reported in respect to T1 because the influence of T2 is literally zero in this scenario (B2 = 9−B1).
Table 4 contains the abbreviations for Table 5. Note, that in Table 5 the integer combination
{B1 = 6, T1 = 3, T2 = 3} expresses the original booster configuration as assumed in GPOPS
[7]. While in GPOPS [7] an optimal objective function of 7529.71kg is reported, here a value
of 7504.48kg is given to the corresponding integer combination {6, 3, 3}. This difference find its
explanation in the additional constraints and different integration approach applied here.

8

http://www.unibw.de/lrt1/gerdts/software
http://www.unibw.de/lrt1/gerdts/software

From the results of Table 5 it can be seen, that the discrete booster decision variables do have a
significant impact on the objective function. In esp. seven different combinations can be identified,
that improve the result in respect to the original combination of {6, 3, 3}. The best known result in
Table 5 corresponds to the integer combination of {8, 3, 3}. The non-intuitive and diverse impact
of the different integer combination on the solution exemplifies the complexity of this MINLP
formulation very well.

Table 4: Abbreviations for Table 5
Abbreviation Explanation

Booster-Config. Booster Configuration: B1, T1, T2
B1 Number of active booster in first phase
T1 Type of booster used in first phase
T2 Type of booster used in second phase

Best known f(x, y) Best known objective function for
corresponding booster configuration

Table 5: Enumeration over all (feasible) booster configurations with B1 ≥ 6
Booster-Config. Booster-Config.
B1 T1 T2 Best known f(x, y) B1 T1 T2 Best known f(x, y)
6 1 1 -6685.71 8 1 1 -6848.21
6 1 2 -6808.53 8 1 2 -6900.99
6 1 3 -6884.45 8 1 3 -6935.36
6 1 4 -6955.92 8 1 4 -6969.11
6 1 5 -7055.32 8 1 5 -7018.56
6 2 1 -7075.93 8 2 1 -7297.53
6 2 2 -7195.10 8 2 2 -7228.32
6 2 3 -7269.14 8 2 3 -7381.77
6 2 4 -7339.15 8 2 4 -7414.42
6 3 1 -7315.13 8 2 5 -7321.22
6 3 2 -7431.81 8 3 1 -7565.08
6 3 3 -7504.48 8 3 2 -7614.97
6 4 1 -7539.17 8 3 3 -7647.50
7 1 1 -6789.90 9 1 - -6855.30
7 1 2 -6883.25 9 2 - -7324.23
7 1 3 -6942.60 9 3 - -7599.88
7 1 4 -6999.74
7 1 5 -7081.49
7 2 1 -7213.85
7 2 2 -7303.58
7 2 3 -7360.66
7 2 4 -7415.64
7 2 5 -7494.50
7 3 1 -7271.36
7 3 2 -7556.82
7 3 3 -7612.70

Table 6 and Table 6 present the results of 30 individual test runs on the multiple-stage launch
vehicle problem using a fixed budget of 600 (10 Minutes) respectively 7200 (2 Hours) seconds
for MIDACO. For every run, a different random seed is used for MIDACO. The different integer
combinations and objective function values to the solutions found by MIDACO are reported along
the number of function evaluation and cpu-time needed by MIDACO. The solutions by the SQP
method, which uses the MIDACO solutions as starting points, are reported together with the
number of function evaluation (including those for gradient approximations) and cpu times. The

9

SQP algorithm were called with a maximum number of 1000 iterations. Note that the SQP may
stop earlier, if its convergence criteria is satisfied, while MIDACO always performs over its defined
cpu-time budget.

Table 6: 30 runs by MIDACO (max time = 600) + SQP (max iter=1000)
Booster-Config. SQP MIDACO

Run B1 T1 T2 f(x, y) Eval Time f(x, y) Eval Time
1 8 3 3 -7647.50 327060 322.6 -6857.99 222866 600.0
2 9 3 1 -7599.88 274208 292.9 -7163.86 239657 600.0
3 9 3 5 -7599.88 280700 376.8 -7065.85 235807 600.0
4 9 3 5 -7599.88 271308 259.6 -6972.28 198351 600.0
5 8 3 3 -7647.50 306974 282.5 -6963.09 281567 600.0
6 8 3 3 -7647.50 270452 258.3 -6920.35 269536 600.0
7 9 3 5 -7599.88 269558 262.1 -7038.81 262407 600.0
8 8 3 3 -7647.50 281106 264.3 -6820.98 270953 600.0
9 7 3 3 -7612.85 350416 373.0 -6956.02 261879 600.0
10 8 3 3 -7647.50 145076 139.4 -6996.72 268385 600.0
11 8 2 5 -7462.25 330614 314.2 -6918.20 266153 600.0
12 8 3 3 -7647.50 352408 336.5 -6889.87 266954 600.0
13 9 3 5 -7599.88 297954 377.8 -6972.39 258888 600.0
14 8 3 3 -7647.50 339916 368.0 -6818.03 208452 600.0
15 9 3 2 -7599.88 350742 321.5 -7024.97 272402 600.0
16 8 3 3 -7647.47 359535 334.2 -6914.47 270246 600.0
17 7 3 3 -7612.85 362934 367.2 -6977.27 239453 600.0
18 9 3 1 -7599.88 310868 315.7 -6954.59 258475 600.0
19 9 3 5 -7599.87 363478 369.6 -7036.21 245399 600.0
20 9 3 2 -7599.88 343712 351.9 -6797.39 257383 600.0
21 8 3 3 -7647.50 334478 337.0 -6971.25 252131 600.0
22 8 3 3 -7647.50 306314 311.1 -6852.83 254798 600.0
23 8 3 3 -7647.50 305118 299.1 -6929.07 250874 600.0
24 9 3 3 -7599.88 280658 281.6 -7031.31 254307 600.0
25 8 3 3 -7647.50 270780 252.8 -6911.24 212809 600.0
26 6 4 1 -7539.17 364376 335.3 -6814.24 267337 600.0
27 9 3 5 -7599.88 323402 297.5 -6834.61 273553 600.0
28 6 4 1 -7539.17 356594 315.2 -6872.51 287757 600.0
29 9 3 3 -7599.88 288322 265.3 -6876.98 278023 600.0
30 8 3 3 -7647.50 367318 429.2 -7080.80 278160 600.0

Average over all runs: -7612.74 312879 313.7 -6941.14 255498 600.0

10

Table 7: 30 runs by MIDACO (max time = 7200) + SQP (max iter=1000)
Booster-Config. SQP MIDACO

Run B1 T1 T2 f(x, y) Eval Time f(x, y) Eval Time
1 9 3 1 -7599.88 357908 317.7 -7419.65 3455790 7200.0
2 9 3 1 -7599.88 353114 315.1 -7449.22 3450447 7200.0
3 8 3 3 -7647.50 363366 321.1 -7502.77 3443609 7200.0
4 9 3 1 -7599.88 267022 236.8 -7419.91 3449060 7200.0
5 9 3 5 -7599.88 309848 274.6 -7418.63 3460976 7200.0
6 9 3 1 -7599.88 173384 153.8 -7436.00 3472466 7200.0
7 9 3 1 -7599.88 346444 307.3 -7555.53 3456612 7200.0
8 9 3 4 -7599.88 265638 234.8 -7369.10 3457577 7200.0
9 7 3 3 -7567.75 6713 6.4 -7565.33 3445493 7200.0
10 9 3 4 -7599.88 284148 254.1 -7524.85 3445318 7200.0
11 8 3 3 -7524.57 7379 7.1 -7519.89 3447985 7200.0
12 8 3 3 -7647.50 354988 313.6 -7481.90 3459946 7200.0
13 9 3 1 -7599.88 270324 240.1 -7444.49 3453002 7200.0
14 8 3 3 -7647.50 363938 322.9 -7479.16 3451839 7200.0
15 9 3 5 -7599.88 266138 235.9 -7500.50 3464034 7200.0
16 9 3 5 -7599.88 301198 266.8 -7519.93 3481049 7200.0
17 9 3 3 -7599.88 344342 307.8 -7456.35 3450507 7200.0
18 9 3 1 -7599.88 273766 242.3 -7528.82 3454741 7200.0
19 9 3 1 -7599.88 298972 267.0 -7527.04 3458943 7200.0
20 9 3 4 -7599.88 324916 290.1 -7431.08 3468826 7200.0
21 9 3 5 -7599.88 355510 317.4 -7498.23 3487475 7200.0
22 9 3 5 -7599.88 341446 322.4 -7430.29 3042720 7200.0
23 8 3 3 -7647.43 309588 370.1 -7536.62 2879186 7200.0
24 9 3 5 -7599.88 349166 425.9 -7460.48 2435917 7200.0
25 8 3 3 -7513.12 7360 9.2 -7505.67 2568537 7200.0
26 6 4 1 -7539.17 361342 332.9 -7434.57 2871096 7200.0
27 9 3 5 -7599.88 313390 313.4 -7348.84 3060132 7200.0
28 9 3 3 -7599.88 263188 347.4 -7475.90 3150988 7200.0
29 8 3 3 -7647.50 355292 321.1 -7470.97 2873982 7200.0
30 8 3 3 -7647.50 365252 327.5 -7491.21 3336049 7200.0

Average over all runs: -7600.91 285169.3 266.8 -7473.43 3294476.7 7200.0

In case of Table 6 MIDACO reveals the best known integer combination of {8, 3, 3} in 13 out of
30 cases (∼ 43 %). In 12 cases the integer combination of {9, 3,−} has been found. Only one
time (Run 11) an integer combination is found by MIDACO, that corresponds to a solution that is
less optimal than the original combination of {6, 3, 3}. The average objective function value of the
MIDACO solutions is 6941.14 kg corresponding to an average of 255498 function evaluation. The
SQP algorithm is able to successfully refine all MIDACO solutions to the best known solutions
presented in Table 5, requiring 312879 function evaluation and about 5 Minutes on average.

In case of Table 7 MIDACO reveals the best known integer combination of {8, 3, 3} in 8 out of
30 cases (∼ 27 %). In 20 cases the integer combination of {9, 3,−} has been found. In all cases
MIDACO reveals integer combination, that corresponds to solutions that are more attractive than
the original combination of {6, 3, 3}. The average objective function value of the MIDACO solutions
is 7473.43 kg corresponding to an average of 3294476 function evaluation. The SQP algorithm is
able to successfully refine the MIDACO solutions to the best known solutions presented in Table
5 in 27 out of 30 cases. In three cases (Run 9, Run 11 and Run 25) the SQP algorithm stops
prematurely.

Figure 1 contains plots regarding the best known solution to the multiple-stage launch vehicle
problem corresponding to the integer combination {8, 3, 3}. This is in particular the altitude,
control, velocity, mass, energy transfer and dynamic pressure progression of the launch vehicle

11

during its total flight. It can be seen, that the behavior is very similar to the original solution
reported in GPOPS [7].

Figure 1: Illustration of the control and physical behavior of the launch vehicle

12

3.5 Launch Vehicle: Conclusions and Interpretation

The optimal control of a multiple-stage launch vehicle has been considered. In contrast to the
original purely continuous approach in GPOPS [7], here some mixed integer extensions regarding
the booster configuration along with further non-linear constraints have been added. Analyzing the
impact of those discrete aspects (Table 5) revealed a non-intuitive and diverse integer complexity.
The resulting MINLP problem can therefore be categorized as very challenging and consists of well
over 100 variables and constraints, which is at the limit of current state of the art MINLP solvers,
based on evolutionary algorithms.

Two numerical test series of 30 runs each applied a hybrid strategy of the stochastic MIDACO
algorithm coupled with a deterministic SQP method to solve the MINLP problem. In both test
series MIDACO was able to provide the best known integer combination of the MINLP with high
probability, while the SQP method was in most cases able to successfully refine those MIDACO
solutions in a reasonable time of about 5 Minutes. Interestingly it could be observed, that a
relative small cpu-time budget of 600 (10 Minutes) seconds for MIDACO was sufficient, to obtain
premature MINLP solutions of such quality, that the SQP algorithm could always successfully
refine those. In contrast to this, the larger budget of 7200 seconds had two undesired effects,
which is a less probability in the best known integer combination and some over-fitting that led
to premature convergence of the SQP method. The lower probability in finding the best known
integer seems to be correlated to the amount of {9, 3,−} combinations revealed by MIDACO. Due
to the insignificance of the third integer variable T2 in the scenario of B1 = 0, those solutions have
a five times higher probability. As the refinement of the solution to the optimal control problem
is highly depending on the precision of the continuous variables, a longer runtime for MIDACO
implies therefore a higher probability to switch to the sub-optimal {9, 3,−}.

4 Interplanetary Space Mission Design

The design of an interplanetary space mission from Earth to Jupiter is considered here. This
application is based on the real world mission Galileo launched by NASA in October 1989 (see
http://solarsystem.nasa.gov/galileo/). The Galileo mission was the first one to implement
gravity assist maneuvers, where the direction and velocity of the spacecraft is changed due to the
gravitational force of a planet. The Galileo probe performed three flybys in total (one at Venus
and two at Earth) and several minor flybys at asteroids on its way to Jupiter. Here a general inter-
planetary space mission model is assumed, considering the flyby planets as discrete optimization
variables. The model setup is so general, that it will allow several possible feasible trajectories from
Earth to Jupiter, including the Galileo type of mission. Together with the continuous optimization
parameters (e.g. for thrusting and flyby altitudes), the mission design forms a challenging MINLP
problem. To the best knowledge of the author, this is the first time, that a interplanetary space
trajectory optimization problem is considered as MINLP.

4.1 Space Mission Layout

The space mission is implemented as an optimal control problem containing several stages, corre-
sponding to different arcs of the mission. Here an arc describes the time between two major events
of the mission, such as flyby or thrusting maneuvers. The mission is characterized by three flyby
maneuvers, which is based on the real Galileo mission. For thrusting it assumes one deep space
maneuver (DSM), which is a thrusting maneuver that happens in space where the influence of any
planet can be neglected. Further an escape (from Earth) and a capture (for Jupiter) thrusting ma-
neuver are supposed. Further the flyby altitudes are assumed as continuous optimization variables
as well as the time duration of each arc. Figure 2 illustrates the mission layout regarding the five
arcs and major events.

13

http://solarsystem.nasa.gov/galileo/

Figure 2: MGA-DSM space mission layout regarding arcs and major events

In total, the space mission model consists of 18 continuous optimization variables x and three
integer variables y, representing the planet candidates for every flyby in the mission layout (see
Fig. 2). All nine planets of the solar system are considered as possible flyby candidate. Thus the
integer complexity of this MINLP formulation is 93 = 729, whereas only the first four planets of
the inner solar system seem to be reasonable flyby candidates. Table 8 lists the nine planets with
their corresponding integer identification number.

Table 8: Planet numeration
Number Planet
1 Mercury
2 Venus
3 Earth
4 Mars
5 Jupiter
6 Saturn
7 Uranus
8 Neptune
9 Pluto

Table 9 lists all optimization variables of the mission with a brief description and assumed lower
and upper bounds. Note, that the three thrusting maneuvers are controlled in three cartesian
dimensions (X, Y, Z). For gravity assists a minimal and maximal flyby altitude is assumed, which
is based on the concrete flyby planet radius. The minimal flyby altitude Altmin is defined as
(101)% of the planet radius, where the 1% simulates the planet atmosphere. Only for the Earth,
an atmosphere of 300km (instead of 63.78km, which would be 1% of the Earth radius) is assumed
in particular, to take into account satellites orbiting the Earth. The maximal flyby altitude Altmax
is defined as Altmax = 100 ·Altmin, which also allows to model flybys of very little impact on the
trajectory. The launch date of the space mission is considered a further continuous optimization
variable, where a launch time window of two years (from 1 Jan. 1989 to 31 Dec. 1990) is assumed.

14

Table 9: Optimization variables x (continuous) and y (integer) with bounds
Variable Description Lower Bound Upper Bound
continuous
x1 Launch Date 0 (01 Jan. 1989) 730 (31 Dec. 1990)
x2 Duration of Arc 1 0 (days) 200 (days)
x3 Duration of Arc 2 0 (days) 400 (days)
x4 Duration of Arc 3 0 (days) 800 (days)
x5 Duration of Arc 4 0 (days) 100 (days)
x6 Duration of Arc 5 0 (days) 1200 (days)
x7 Thrust Escape (X direction) -6000.0 (m/sec) 6000.0 (m/sec)
x8 Thrust Escape (Y direction) -6000.0 (m/sec) 6000.0 (m/sec)
x9 Thrust Escape (Z direction) -3000.0 (m/sec) 3000.0 (m/sec)
x10 Thrust Capture (X direction) -6000.0 (m/sec) 6000.0 (m/sec)
x11 Thrust Capture (Y direction) -6000.0 (m/sec) 6000.0 (m/sec)
x12 Thrust Capture (Z direction) -3000.0 (m/sec) 3000.0 (m/sec)
x13 Thrust DSM (X direction) -1000.0 (m/sec) 1000.0 (m/sec)
x14 Thrust DSM (Y direction) -1000.0 (m/sec) 1000.0 (m/sec)
x15 Thrust DSM (Z direction) -500.0 (m/sec) 500.0 (m/sec)
x16 Altitude Flyby 1 0.00 (∼ Altmin) 1.00 (∼ Altmax)
x17 Altitude Flyby 2 0.00 (∼ Altmin) 1.00 (∼ Altmax)
x18 Altitude Flyby 3 0.00 (∼ Altmin) 1.00 (∼ Altmax)
integer
y1 Planet Flyby 1 1 (Mercury) 9 (Pluto)
y2 Planet Flyby 2 1 (Mercury) 9 (Pluto)
y3 Planet Flyby 3 1 (Mercury) 9 (Pluto)

The objective function f(x, y) to be minimized is defined as the total ∆V (change in velocity) of
the mission, which is produced by all the individual thrusting maneuvers. This is in particular the
∆Vescape, ∆Vcapture and ∆VDSM . While the ∆VDSM directly corresponds to the thrusting of the
DSM, the ∆Vescape and ∆Vcapture take into account velocity of the escape and capture planet and
thus express the velocity change in reference to the planet and not the Sun. The mathematical
formulation of the objective function is given in Equation 17:

f(x, y) = ∆V = ∆Vescape + ∆Vcapture + ∆VDSM ,

with

∆Vescape =

√
2µEarth

x27 + x28 + x29
−
√

2µEarth(
1

REarthperegee

− 1

REarthapogee −REarthperegee

),

∆Vcapture =

√
2µJupiter

x210 + x211 + x212
−
√

2µJupiter(
1

RJupiterperegee

− 1

RJupiterapogee −RJupiterperegee

),

∆VDSM =
√
x213 + x214 + x215.

(17)

The astrophysical constants used in Equation 17 are listed in Table 10.

Table 10: Gravitation parameter and apsis for Earth and Jupiter

µEarth = 3.986 · 1014 REarthperegee = 6778000 REarthapogee = 42165000

µJupiter = 1.267 · 1017 RJupiterperegee = 109 RJupiterapogee = 2 · 1010

The mission is restricted to twelve nonlinear constraints g1(x, y), ..., g12(x, y) which take into
account on the trajectory of the spacecraft. The calculation of the trajectory (nominated as
RSpacecraft(t)) is not given in detail here, as its implementation takes into account several complex
subroutines, which were friendly provided by EADS Astrium (http://www.astrium.eads.net/).

15

http://www.astrium.eads.net/

Those subroutines model for example the orbit propagation of the spacecraft based on Lagrange
coefficients. Here only the mathematical structure of the constraints g(x, y) should be illustrated,
which form the MINLP problem. The full implementation of the Mission (including the subroutines
provided by Astrium) can be downloaded at http://www.midaco-solver.com/applications.

html for studying purposes. Table 11 describes the notation used in the constraints for those
functions, which are not given in detail here.

Table 11: Notation for constraints
Notation Description
RSpacecraft(t) Position of the spacecraft at time t
RPlanet(t, P) Position of planet P at time t
V Planet(t, P) Velocity of planet P at time t
V SpacecraftX (t) Velocity of the spacecraft (X direction)

V SpacecraftY (t) Velocity of the spacecraft (Y direction)

V SpacecraftZ (t) Velocity of the spacecraft (Z direction)
rotaPlanet(P) Orbit rotation time (in days) of planet P
S% Sphere of action radius of a planet (given in percentage ∈ [0, 1])

The first three constraints model the necessary condition for the flyby maneuvers, that the space-
craft is within the sphere of action (roughly speaking the position) of the concrete flyby planet
(here y1, y2 and y3) at the time, when the actual flyby maneuver is supposed to happen. This
time point depends on the launch date x1 and the time durations of the arcs (x2, ..., x6). The
radius of the sphere of action is based on the distance of the concrete flyby planet to the sun. Here
the constraints assume, that the spacecraft is within at least S% percent (with S% ∈ [0, 1], where
0 ∼ 0% and 1 ∼ 100%) of this distance, which is considered the sphere of action. Equation 18
states the mathematical structure of the first three constraints:

g1(x, y) =‖RSpacecraft(x1 + x2)−RPlanet(x1 + x2, y1)‖
≤ S% ‖RPlanet(x1 + x2, y1)‖,

g2(x, y) =‖RSpacecraft(x1 + x2 + x3)−RPlanet(x1 + x2 + x3, y2)‖
≤ S% ‖RPlanet(x1 + x2 + x3, y2)‖,

g3(x, y) =‖RSpacecraft(x1 + x2 + x3 + x4)−RPlanet(x1 + x2 + x3 + x4, y3)‖
≤ S% ‖RPlanet(x1 + x2 + x3 + x4, y3)‖.

(18)

The fourth constraint models the necessary condition, that the spacecraft is within the sphere of
action of Jupiter (Planet number 5) at the very end of the mission. This is done analog to the first
three constraints. Equation 19 states the mathematical structure of the fourth constraint:

g4(x, y) =‖RSpacecraft(x1 + x2 + x3 + x4 + x5 + x6)

−RPlanet(x1 + x2 + x3 + x4 + x5 + x6, 5)‖
≤ S% ‖RPlanet(x1 + x2 + x3 + x4 + x5 + x6, 5)‖.

(19)

The fifth to seventh constraint model the necessary condition, that the velocity of the spacecraft
at the very end of the mission is identical to the velocity (and direction) of the target planet,
Jupiter. This is to later allow the spacecraft to orbit Jupiter. As the total velocity of Jupiter itself
(‖V Planet(t, 5)‖) is undirected, three constraints are necessary to take into account the specific
directions (in X,Y , and Z). The same tolerance S% for the sphere of action (described above) is
applied here to the total velocity of the target planet, to allow some tolerance in fulfilling these

16

http://www.midaco-solver.com/applications.html
http://www.midaco-solver.com/applications.html

constraints. Equation 20 states the mathematical structure of the fifth to seventh constraint:

g5(x, y) =|V SpacecraftX (x1 + x2 + x3 + x4 + x5 + x6)−
V PlanetX (x1 + x2 + x3 + x4 + x5 + x6, 5)|
≤ S% ‖V Planet(x1 + x2 + x3 + x4 + x5 + x6, 5)‖,

g6(x, y) =|V SpacecraftY (x1 + x2 + x3 + x4 + x5 + x6)−
V PlanetY (x1 + x2 + x3 + x4 + x5 + x6, 5)|
≤ S% ‖V Planet(x1 + x2 + x3 + x4 + x5 + x6, 5)‖,

g7(x, y) =|V SpacecraftZ (x1 + x2 + x3 + x4 + x5 + x6)−
V PlanetZ (x1 + x2 + x3 + x4 + x5 + x6, 5)|
≤ S% ‖V Planet(x1 + x2 + x3 + x4 + x5 + x6, 5)‖.

(20)

Some additional constraints are imposed, to avoid feasible, but undesired solutions. Those unde-
sired solutions might attract the optimization algorithm, but are not of any relevance and should
therefore be avoided. The eighth constraint impose, that not all flyby maneuvers happen at the
planet Earth. Equation 21 states the mathematical structure of the eighth constraint:

g8(x, y) =
{ ∞ , if y1 = y2 = y3,

0 , else. (21)

The ninth to twelfth constraint impose, that if two successive flybys happen at the same planet,
the time duration between those flybys must be at least greater or equal than half of the total
rotation time of the flyby planet (in respect to the sun). Equation 22 states the mathematical
structure of the ninth to twelfth constraint constraint:

g9(x, y) =

{
rotaPlanet(y1)

2 − x2 ≤ 0 , if y1 = 3,
0 , else,

g10(x, y) =

{
rotaPlanet(y2)

2 − x3 ≤ 0 , if y2 = y1,
0 , else,

g11(x, y) =

{
rotaPlanet(y3)

2 − x4 ≤ 0 , if y3 = y2,
0 , else,

g12(x, y) =

{
rotaPlanet(5)

2 − (x5 + x6) ≤ 0 , if 5 = y3,
0 , else.

(22)

4.2 Numerical Results

MIDACO has been used to solve this application in a two step approach. In a first step, a number
of several test runs using different random seeds are performed on the full mission model using a
moderate parameter of S% = 0.03 (which is 3%) for the accuracy of the sphere of action around the
planets. As the accuracy of the sphere of action is a crucial parameter in the model, this moderate
accuracy will allow MIDACO to identify possible feasible mission trajectories more easily, while
concentrating more on the integer complexity of the problem. In a second step, the most promising
solutions found within the first step should then be further refined by MIDACO, assuming a higher
accuracy of 0.5% for the sphere of action.

Table 13 lists the results of the first optimization step, where MIDACO is applied 10 times on the
space mission model using different random seeds and a moderate precision of 3% for the sphere of

17

action in the model. Every test run was performed for a duration of one hour on a PC with an Intel
Xeon CPU E5640 (2.67GHz clock rate, 4GB RAM) which corresponds to some hundred million
function evaluation. Note, that such a high amount of function evaluation is nothing unusual
for a stochastic algorithm applied on a difficult problem. As the MIDACO software is capable
of processing millions of iterates in seconds, the total cpu runtime of one hour remains here still
reasonable.

Table 12: Abbreviations for Table 13
Abbreviation Explanation
Run Number of test run
Launch Date for mission departure from Earth
∆V Objective function value (m/sec)
Duration Duration of total mission (Years)
FlyBy 1 Planet selected by MIDACO for 1st gravity assist maneuver
FlyBy 2 Planet selected by MIDACO for 2nd gravity assist maneuver
FlyBy 3 Planet selected by MIDACO for 3rd gravity assist maneuver

Table 12 explains the abbreviations used in Table 13.

Table 13: 10 test runs by MIDACO on mission model with 3% sphere of action
Run Launch ∆V Duration FlyBy 1 FlyBy 2 FlyBy 3
1 6 Nov. 1989 2553 5.88 Venus Earth Earth
2 30 Nov. 1989 3310 4.83 Venus Earth Earth
3 30 Nov. 1989 3218 4.88 Venus Earth Earth
4 10 Jul. 1989 3390 3.97 Venus Earth Mars
5 20 Nov. 1989 2890 4.77 Venus Earth Earth
6 23 May 1989 2759 5.35 Earth Venus Earth
7 21 Mar 1989 infeasible 4.85 Earth Earth Mars
8 13 Apr. 1989 3290 4.54 Earth Venus Earth
9 30 Nov. 1989 3289 4.79 Venus Earth Earth
10 16 Sep. 1989 2684 6.10 Venus Earth Earth

As it can be seen from Table 13, MIDACO did reveal a number of possible mission trajectory,
based on different flyby planet candidates. Those missions vary strongly in their characteristics, as
it can be seen from the differences in the launch date, objective function values ∆V and total flight
durations. Only in one case (test run number 7), MIDACO did not succeed to find a feasible mission
trajectory. The integer combination mostly attracted by MIDACO is (Venus, Earth, Earth), which
is indeed the same combination as used in the original Galileo mission. Besides this combination,
the combination (Venus, Earth, Mars) found in test run number 4 seems somewhat interesting.
This mission has the worst (in esp. highest) objective function value, but also the shortest flight
duration.

In a second optimization step, the solutions corresponding to test run number 1 (named Mission1)
and number 4 (named Mission4)from Table 13 should now be refined by MIDACO, assuming a
more precise accuracy of 0.5% for the sphere of action around the planets. For this purpose, those
solutions are given to MIDACO as starting point and the QSTART (using a value of 10000, see
Section 2.1 or [13]) is activated for a more efficient search in the vicinity of the submitted initial
solution. MIDACO is applied to the refined model for one hour again for both initial solutions
(in esp. Mission1 and Mission4 from Table 13). Table 14 shows the solutions of the refinement
of Mission1 and Mission4 with details on the individual flyby maneuvers. Table 14 also compares
these two missions generated by MIDACO with the original Galileo mission regarding their main
characteristics.

18

Table 14: Comparison between original Galileo and MIDACO Missions
Galileo Mission Mission1 refine 0.5 % Mission4 refine 0.5 %

Launch 18 Oct. 1989 8 Nov. 1989 6 Jul. 1989
Duration 6.14 Years 6.14 Years 4.15 Years
∆V unknown 3,350 m/sec 5,177 m/sec
1st Flyby
Planet Venus Venus Venus
Date 10 Feb. 1990 23 Feb. 1990 21 Jan. 1990
Altitude 16,000km 28,901km 3,013km
2nd Flyby
Planet Earth Earth Earth
Date 8 Dec. 1990 5 Dec. 1990 4 Sep. 1990
Altitude 960km 473,191km 1,754km
3rd Flyby
Planet Earth Earth Mars
Date 8 Dec. 1992 4 Dec. 1992 31 Dec. 1990
Altitude 303km 300km 39km

Analyzing the Missions from Table 14, the structural difference between Mission1 and Mission4
is evident. Mission4 is however in so far interesting in respect to Mission1, as it provides a much
shorter (∼ 32.4%) flight duration to the price of an equivalent increased (∼ 35.3%) objective
function value. More interestingly is the striking similarity between Mission1 and the original
Galileo mission. With a shift of about 22 days regarding the launch date, these two mission share
exactly the same flight duration and are closely related regarding all the characteristics of their
gravity assist maneuvers, except the flyby altitude at the 2nd flyby. Here a significant difference
between 960km (Galileo) and 473,191 km (Mission1) occurs. However, this difference can be well
explained by taking into account, that for the original Galileo mission the observation of asteroids
were an objective, while asteroids were not considered in the model formulation here. Both missions
perform their first Earth flyby in December 1990. The Galileo mission performs its first flyby at
Earth at a moderate altitude of 960km in order to significantly increase the semi major axis of its
orbit to visit the Gaspra asteroid in October 1991. This new orbit is then rotated one time by the
Galileo probe, before it performs its second flyby at Earth two years later in 1992. As in this model
here asteroids were not considered, this maneuver is not a target in Mission1. Therefore Mission1
performs its first flyby at Earth at a very large altitude of 473,191 km in order to have only a very
small gravitational impact on its trajectory. This way Mission1 can perform two rotations of its
near Earth orbit in a row, before it performs its second Earth flyby two years later in December
1992 like the original Galileo mission.

Figure 3 shows the space mission trajectory of the original Galileo mission (image taken from
Wikimedia (http://commons.wikimedia.org)) and the Mission1 generated by MIDACO. The
coincidence of the major events of both missions can be well observed. Also the difference in the
trajectories between the 2nd and 3rd flyby can be seen: While Galileo performs one orbit rotation
visiting Gaspra, Mission1 remains in a close Earth orbit rotating it two times.

Please note, that Video Animations of the MIDACO Mission1 and Mission4 are available at
http://www.midaco-solver.com/space.html for downloading.

19

http://commons.wikimedia.org
http://www.midaco-solver.com/space.html

Figure 3: Space trajectories of the NASA Galileo mission and MIDACO Mission1

4.3 Space Mission Design: Conclusions

For the first time a multi gravity assist interplanetary space mission was considered in an MINLP
formulation, considering flyby planet candidates as discrete decision variables. As space trajectory
optimization problems are known to be very difficult (see Section [2]), this MINLP approach can
be considered as exceptionally challenging. In accordance to the Galileo mission by NASA in 1989,
a general space mission model for transfers from Earth to Jupiter was formulated, based on three

20

flyby maneuvers. In a two step optimization process, it could be shown, that MIDACO is able
to generate feasible space trajectories in a reasonable time and accuracy fully automatically. The
results from Table 13 indicate, that the space mission model setting was general enough, to allow
several feasible space trajectories (which implies a sufficient large search space). Among some
different space mission trajectory candidates, MIDACO did reveal the Galileo type of mission with
high probability (7 out of 10 cases). The accuracy of the sphere of action around the planets
was identified as crucial model parameter. Within a second optimization step, MIDACO was
able to refine its generated missions to a sufficient accuracy of 0.5% and the fully automatically
generated mission by MIDACO showed an intriguing coincidence with the characteristics of the
original Galileo mission from 1989.

5 Optimal Control of an F8-Aircraft Manoeuvre

Here the optimal control of a simplified aircraft manoeuvre is discussed. This application is known
as the F-8 aircraft control problem introduced by Kaya and Noakes [4]. Here we refer to a for-
mulation of this application that is available from mintOC [8] at http://mintoc.de/index.php/
F-8_aircraft. Several reference solutions to this application can be found at the mintOC [8]
webpage. Among those are solutions obtained by well known solvers such as BONMIN, KNITRO
and IPOPT. Please note, that none of the above mentioned solvers is capable to solve this appli-
cation to its current best known solution, due to the information given on mintOC [8]. Hence we
consider this as a challenging application with good possibilities to compare the solution quality
obtained by the here considered approach with concurrent ones.

The objective of this application is the minimization of the final time of a simplified aircraft ma-
noeuvre. The manoeuvre is performed using a bang-bang control approach, thus the control can
only switch between two values. Here this application is formulated as a NLP optimal control
problem, applying 6 different stages, whereas every stage represents a switch in the bang-bang
control. This implies 6 optimization variables, which correspond to the starting time points of
the stages, defining the switching time point of the bang bang control. This approach coincides
with the representation of the reference solutions given at mintOC [8], where the optimal con-
trol stages are referred to as arcs. Besides the 6 optimization variables, 3 equality constraints
must be fulfilled at the end of the manoeuvre, representing the correct final state of the aircraft.
This is in especially that all three differential states must be zero at the final time of the manoeuvre.

Equation 23 expresses the F8 aircraft manoeuvre regarding the three time depended considered
differential states ẋ0, ẋ1 and ẋ2. The initial state x(0) and the final state x(tfinal) are also stated,
whereas the final state implies the above mentioned three equality constraints.

Minimize tfinal,

s.t.: ẋ0 = − 0.877x0 + x2 − 0.088x0x2 + 0.47x20 − 0.019x21 − x20x2 + 3.846x30,

− (0.215ξ − 0.28x20 − 0.47x0ξ
2 − 0.63ξ3)w,

− (−0.215ξ + 0.28x20ξ − 0.47x0ξ
2 + 0.063ξ3)(1− w),

ẋ1 = x2,

ẋ2 = − 4.208x0 − 0.396x2 − 0.47x20 − 3.564x30,

− (20.967ξ − 6.265x20ξ − 46x0ξ
2 − 61.4ξ3)w,

− (−20.967ξ + 6.265x20ξ − 46x0ξ
2 + 61.4ξ3)(1− w),

x(0) = (0.4655, 0, 0)T ,

x(tfinal) = (0, 0, 0)T .

(23)

The bang-bang control w ∈ {0, 1} is defined in Equation 24. The bang-bang structure is here
defined by the time points t1, t2, t3, t4, t5 and tfinal, marking the beginning or end of a different

21

http://mintoc.de/index.php/F-8_aircraft
http://mintoc.de/index.php/F-8_aircraft

stage (also called arc). These six time points are the decision variables, whereas the last one
(tfinal) also expresses the objective function.

w(t) =


1 , if 0 ≤ t < t1,
0 , if t1 ≤ t < t2,
1 , if t2 ≤ t < t3,
0 , if t3 ≤ t < t4,
1 , if t4 ≤ t < t5,
0 , if t5 ≤ t ≤ tfinal.

(24)

The F8-Aircraft application is solved by a combination of MIDACO and a SQP algorithm (see
Section 2.1). MIDACO is first applied on the optimal control problem using the lower bounds
(zero) as starting point, whereas the SQP algorithm is then afterwards called, applying the MI-
DACO solution as starting point. Two different setups for MIDACO are assumed: i) using default
parameters and ii) using tuned parameters regarding the algorithm (in esp. Qstart and Oracle,
see Section 2.1 or [13]). For the default setup, MIDACO is given a maximal time budget of 600
seconds, or stops before this limit by its own automatic stopping criteria (in esp. Autostop = 5,
see Section 2.1 or [13]). For the tuned setup, MIDACO is given a maximal time budget of 60
seconds, a Qstart parameter of 100 (in order to focus the search process)and an Oracle parameter
of 4.0 (which is based in the best known solution corresponding to an objective function value of
3.78, see Table 17). MIDACO assumes a moderate accuracy of 10−2 for the constraint violation,
whereas the SQP algorithm assumes a higher accuracy of 10−6. The idea behind this approach is
that MIDACO delivers a reasonable good starting point for the SQP algorithm, which then returns
a highly accurate solution. Table 15 and Table 16 shows the numerical results by this approach
for 10 test runs (using a different random seed each time) by MIDACO using default parameters
and tuned ones respectively. All runs were performed on a computer with an Intel(R) Core(TM)
i7 Q820 CPU with 1.73GHz clock rate and 4GB RAM.

Table 15: Results of 10 test runs on F8-Aircraft using MIDACO (default) and SQP
MIDACO SQP

Test Run Objective Evaluation Time Objective Evaluation Time
1 4.017191 575038 127.34 3.780211 106 0.04
2 3.753558 467211 126.49 3.780212 184 0.09
3 6.830677 313259 82.77 6.827373 221 0.13
4 3.740785 904630 262.50 3.780211 210 0.09
5 6.873262 1145671 304.39 6.827373 299 0.18
6 3.735261 422985 101.00 3.780211 73 0.03
7 6.860254 2097135 568.07 3.780211 711 0.44
8 3.766495 329588 89.35 3.780211 313 0.14
9 6.288805 1239587 600.00 6.322984 104 0.06

10 4.573276 667050 227.74 3.780211 3274 1.95
Average: 5.043956 820663 248.96 4.643921 549 0.32

Table 16: Results of 10 test runs on F8-Aircraft using MIDACO (tuned) and SQP
MIDACO SQP

Test Run Objective Evaluation Time Objective Evaluation Time
1 3.775308 107930 60.00 3.780211 203 0.13
2 3.781723 133881 60.00 3.780211 170 0.07
3 3.735079 109770 60.00 3.780211 63 0.04
4 3.918386 104279 60.00 3.780211 206 0.14
5 4.092283 102022 60.00 3.780211 207 0.14
6 4.020482 107319 60.00 3.780211 92 0.06
7 3.733805 114478 60.00 3.780211 63 0.04
8 3.797692 100179 60.00 3.780211 157 0.11
9 4.048429 101560 60.00 3.780212 316 0.20

10 3.786220 121182 60.00 3.780211 108 0.08
Average: 3.868941 110260 60.00 3.780211 158 0.10

Table 15 displays the best solution found by the combination of MIDACO and SQP from Table 17
and compares it with the best known solution (found by Sager) from mintOC [8].

22

Table 17: F-8 Aircaft control problem solutions
Arc w(t) Sager MIDACO + SQP
1 1 1.13492 1.1368996475
2 0 0.34703 0.3457308852
3 1 1.60721 1.6071985027
4 0 0.69169 0.6048388008
5 1 0 0.0000000000
6 0 0 0.0855435144
Infeasibility - 2.21723e-07 0.4896e-13
Objective - 3.78086 3.780211

Figure 4 displays the three differential states of the aircraft model over time, corresponding to the
best solution presented in Table 17.

Figure 4: Differential states corresponding to best known solution

From the results from Table 15 it can be seen, that MIDACO (using default parameters) delivers
four out of ten times a solution close to the best known one. In two cases MIDACO delivers
a moderate solution quality of an objective function value between 4.01 and 4.57, while in the
remaining four cases a worse objective function value between 6.28 and 6.87 is revealed. The
SQP algorithm is able to refine the MIDACO solutions to the best known one (corresponding to
an objective function value of 3.78) in seven out of ten cases to a high accuracy in less than a second.

From the results from Table 16 it can be seen, that MIDACO (using tuned parameters) delivers
in all cases good solutions (in especially those with an objective function value smaller or equal
to the predefined Oracle = 4.0). Note that the cpu time budget for MIDACO in Table 16 is only
60 instead of 600 seconds like in Table 15. The SQP algorithm is able to refine the MIDACO
solutions to the best known one in all cases. Comparing the MIDACO results from Table 15 and
Table 16 demonstrate the possible performance gain in tuning the algorithmic parameters and
the effectiveness of the oracle penalty method (see [12]). In total it can be concluded, that the
proposed hybrid approach here is well capable to robustly solve this application in a reasonable
time with high accuracy.

23

6 Conclusions

Two space and one aerospace application have been presented and solved here by MIDACO.
Taking advantage of the MINLP capabilities of the global optimization software MIDACO, the
two space applications have been formulated as mixed integer problems, which is still a challenging
novelty in space engineering. It could be shown, that MIDACO does robustly solve the presented
applications in a reasonable cpu time. Furthermore it could be demonstrated, that modelling
the applications as mixed integer problems offers an intriguing surplus in either an improved
objective function (see Section 3) or general model capabilities (see Section 4). Additionally to
the novel MINLP formulations, the possible performance gain by a hybridization of the stochastic
MIDACO algorithm with a deterministic SQP algorithm has been investigated in two out of the
three applications. It could be shown, that this approach is able to deliver highly accurate solutions
and significantly shortens the required cpu time (see Table 6 and Table 15). It total it can be
concluded, that MINLP is an ambitious and promising approach in (aero)space engineering and the
recently developed MIDACO software (and its hybridization with local optimization algorithms)
is well capable in solving such applications.

Acknowledgments

The authors would like to acknowledge the supported by the project ”Non-linear mixed-integer-
based Optimisation Technique for Space Applications” (ESTEC/Contract No. 21943/08/NL/ST)
co-funded by ESA Networking Partnership Initiative, Astrium Limited (Stevenage, UK) and the
School of Mathematics, University of Birmingham, UK.

24

References

[1] D. A. Benson. A Gauss Pseudospectral Transcription for Optimal Control. PhD thesis, De-
partment of Aeronautics and Astronautics, Massachusetts Institute of Technology, 2004.

[2] European Space Agency (ESA) and Advanced Concepts Team (ACT). Gtop database - global
optimisation trajectory problems and solutions. Software available at http://www.esa.int/
gsp/ACT/inf/op/globopt.htm, 2011.

[3] G. T. Huntington. Advancement and Analysis of a Gauss Pseudospectral Transcription for
Optimal Control Problems. PhD thesis, Department of Aeronautics and Astronautics, Mas-
sachusetts Institute of Technology, 2007.

[4] Y. Kaya, C. and L. Noakes, J. Computational algorithm for time-optimal switching control.
J. Optimiz. Theory App., 117(1):69–92, 2003.

[5] G.R. Kocis and I.E. Grossmann. Global optimization of nonconvex minlp problems in process
synthesis. Ind. Eng. Chem., 27:1407–1421, 1988.

[6] G. Maria, X. Zu, and J. Sun. Multi-objective minlp optimization used to identify theoretical
gene knockout strategies for e. coli cell. Chem. Biochem. Eng. Q., 25(4):403–424, 2012.

[7] A. V. Rao, D. A. Benson, C. L. Darby, M. A. Patterson, C. Francolin, and G. T. Huntington.
Algorithm 902: Gpops, a matlab software for solving multiple-phase optimal control problems
using the gauss pseudospectral method. ACM T. Math. Software, 37(2):1–39, 2010.

[8] S. Sager. mintOC: Benchmark library of mixed-integer optimal control problems. Software
available at http://mintoc.de, 2011.

[9] M. Schlueter. MIDACO - Global Optimization Software for Mixed Integer Nonlinear Pro-
gramming. Software available at http://www.midaco-solver.com, 2011.

[10] M. Schlueter, J. A. Egea, and J. R. Banga. Extended ant colony optimization for non-convex
mixed integer nonlinear programming. Comput. Oper. Res., 36(7):2217–2229, 2009.

[11] M. Schlueter, J. A. Egea, Antelo L.T., Alonso A.A., and J. R. Banga. An extended ant colony
optimization algorithm for integrated process and control system design. Ind. Eng. Chem.,
48(14):6723–6738, 2009.

[12] M. Schlueter and M Gerdts. The oracle penalty method. J. Global Optim., 47(2):293–325,
2010.

[13] M. Schlueter, M. Gerdts, and Rueckmann J.J. A numerical study of MIDACO on 100 MINLP
benchmarks. Optimization, Taylor and Francis (accepted), 2012.

25

http://www.esa.int/gsp/ACT/inf/op/globopt.htm
http://www.esa.int/gsp/ACT/inf/op/globopt.htm
http://mintoc.de
http://www.midaco-solver.com

	Introduction
	MIDACO Software
	Hybridization with SQP

	Multiple-Stage Launch Vehicle Ascent Problem
	Vehicle Properties
	Mixed Integer Extensions
	Additional Constraints
	Numerical Results
	Launch Vehicle: Conclusions and Interpretation

	Interplanetary Space Mission Design
	Space Mission Layout
	Numerical Results
	Space Mission Design: Conclusions

	Optimal Control of an F8-Aircraft Manoeuvre
	Conclusions
	Bibliography

