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ABSTRACT
This contribution presents numerical results for optimizing a many-
objective space mission trajectory benchmark under considera-
tion of massively parallelized co-evaluation of solution candidates.
The considered benchmark is the well-known Cassini1 instance
published by the European Space Agency (ESA) extended to four
objectives. The MIDACO optimization software represents an evo-
lutionary algorithm based on Ant Colony Optimization (ACO) and
is applied to solve this benchmark with a varying fine-grained par-
allelization factor (P) ranging from one to 1024. It can be shown that
the required number of sequential steps to solve this benchmark
can be significantly reduced by applying massive parallelization,
while still maintaining a sufficient high number of well distributed
non-dominated solutions in the objective space.
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1 INTRODUCTION
Space mission trajectory design is a challenging and active area
for applying optimization algorithms. Since 2005 the Advanced
Concept Team (ACT) of the European Space Agency (ESA) publishes
a database of Global Trajectory Optimization (GTOP) benchmarks
[3] formulated as single-objective optimization problems.

The easiest and most widely used instance of the GTOP set is the
Cassini1 problem, which consist of six variables and four constraints
(see [3] for details). This contribution considers a many-objective
extension of this benchmark, which was introduced in Schlueter et
al. [5] and which consists of four objectives. Table 1 list those four
objectives together with their description and units.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5764-7/18/07. . . $15.00.
https://doi.org/10.1145/3205651.3205674

Table 1: Four Objectives for Cassini1 Benchmark
Objective Name Unit

F1 Total ∆V (including ∆V∞) Km/Sec
F2 Time of Flight Days
F3 Launch Date MJD2000
F4 Launch ∆V∞ Km/Sec

Ant Colony Optimization (ACO) in general and the MIDACO
software in particular has been shown to be efficient for trajectory
design optimization, see for example [1], [4] or [6]. This contribu-
tion investigates the impact of massively parallelized co-evaluation
of solution candidates on the overall number of sequential steps
(called "Blocks", see Section 2.1 in [7] for details) required to solve
the Cassini1 benchmark to its best-known solution.

Besides the expected reduction of sequential steps by applying
massive parallelization, this contribution is also concerned with
the impact of parallelization on the amount and distribution of
non-dominated solutions among the four-dimensional objective
space. It can be shown, that even for massive parallelization the
presented approach delivers a sufficient large and well distributed
set of non-dominated solutions.

2 NUMERICAL RESULTS AND CONCLUSIONS
This section presents numerical results of applying a beta version
of MIDACO 6.0 on the four-objective Cassini1 benchmark. The par-
allelization factor P, which defines the amount of parallel processed
solution candidates within one sequential algorithmic step, is varied
from one to 1024, with unit steps on a loд_2 scale (see first column
of Table 2). For each value of P, 30 individual test runs are con-
ducted, each using a different random-seed and using the original
lower bounds as starting point. An individual test run is considered
successful and stopped, if the best known value (4.9307) in the first
objective (F1) is reached within a precision of 0.1%. Note that 0.1%
is the official required precision upon which ACT/ESA considers
the benchmark to be solved. In regard to the many-objective nature
of this problem, the first objective is set as overall target function to
be minimized while the remaining three objectives are only filtered
for pareto-dominance. This is done because the first objective is the
most complex and critical one and it provides a stopping criteria in
regard to a global best known solution.

Table 2 lists the numerical results for the best out of 30 test
runs and the average results in regard to the required number
of sequential steps (called "Blocks") and overall required function
evaluation (called "Eval").
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Table 2: Best and Average Results for different P
Best run Average

P Blocks Eval Blocks Eval

1 255,017 255,017 1,114,440 1,114,440
2 175,815 351,630 947,207 1,894,414
4 120,180 480,720 785,786 3,143,145
8 45,035 360,280 176,586 1,412,695
16 68,058 1,088,928 156,488 2,503,819
32 106,382 3,404,224 142,003 4,544,125
64 4,409 282,176 116,850 7,478,434
128 1,868 239,104 93,457 11,962,525
256 3,922 1,004,032 90,172 23,084,202
512 3,300 1,689,600 51,711 26,476,424
1024 2,322 2,377,728 26,654 27,293,866

From Table 2 it can be seen that the average number of Blocks can
be significantly reduced from 1,114,440 in the serial case (P=1) to
26,654 in the massively parallelized case of P=1024. In other words:
While the MIDACO algorithm required about 1.1 million sequential
function evaluation in the serial case to reach the best-known solu-
tion in high precision, the same solution could be reached within
only about 26 thousand blocks of sequential function evaluation,
whereas each such block contained 1024 individual function eval-
uation. The "Eval" column in Table 2 shows the number of total
function evaluation corresponding to each P. In the serial case, the
best run required 255,017 function evaluation in total to reach the
best known solution.

From Table 2 it can be further seen that the number of Blocks
for the best out of 30 runs shows a non-monotonic behavior and
significant variance (e.g. 106.382 Blocks for P=32 versus only 4,409
Blocks for P=64). This great variance is explained by the highly non-
linear nature of the objective landscape, which implies a strong
dependence on the random-seed used for each individual test run.

The overall best test run was reached for a parallelization fac-
tor of P=128 and it required only 1,868 sequential steps. Figure
1 and Figure 2 display the final set of non-dominated solutions
respectively for the best run of the P=1 and P=1024 case. Note that
while Figure 2 shows visibly less non-dominated solutions than
Figure 2, it still captures the most relevant trade-off part of the
front between the total ∆V (F1) and flight time (F2). The large differ-
ence in the algorithmic behavior between the serial and massively
parallelized case is also well observable by the quite different scat-
tering of the set of the last 30,000 evaluation. In Figure 1 and Figure
2 the position of the individual MIDACO solution is highlighted
as semi-transparent green hexagon. Note that the symbol size of
the non-dominated solution is varied in the plots to illustrate the
corresponding launch date.

Future research may further investigate the impact of paralleliza-
tion by applying rigorous multi-objective optimization performance
measures, like the hypervolume indicator (HV) and the inverse gen-
eralized distance (IGD) measure. Also, a larger number of test runs
is desired in order to counter-measure the high variance observed
by the results of the individual best runs in the second column of
Table 2.

Figure 1: Solution illustration of best run for P=1

Figure 2: Solution illustration of best run for P=1024
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