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Abstract. The design and optimization of interplanetary space mis-
sion trajectories is known to be a difficult challenge. The trajectory of
the Messenger mission (launched by NASA in 2004) is one of the most
complex ones ever created. The European Space Agency (ESA) makes
available a numerical optimization benchmark which resembles an ac-
curate model of Messengers full mission trajectory. This contribution
presents an optimization approach which is capable to (robustly) solve
ESA’s Messenger full mission benchmark to its putative global solution
within 24 hours run time on a moderate sized computer cluster. The con-
sidered algorithm, named MXHPC, is a parallelization framework for the
MIDACO optimization algorithm which is an evolutionary method par-
ticularly suited for space trajectory design. The presented results demon-
strate the effectiveness of evolutionary computing for complex real-world
problems which have been previously considered intractable.
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1 Introduction

Interplanetary trajectory optimization is a long standing challenge for space en-
gineers and applied mathematicians alike. Since 2005 the Advanced Concept
Team (ACT) of the European Space Agency (ESA) makes publicly available a
comprehensive benchmark database of global trajectory optimization problems
(GTOP) corresponding to real-world missions like Cassini, Rosetta and Messen-
ger. The Messenger (full mission) benchmark in the GTOP database is notably
the most difficult instance among those set, resembling a fully accurate model
of the original trajectory of the Messenger mission launched by NASA in 2004.



2 Lecture Notes in Computer Science: Authors’ Instructions

The GTOP database expresses each benchmark as optimization problem (1)
with box-constraints, whereas the objective function f(x) is considered as nonlin-
ear black-box function depending on a n-dimensional real valued vector of deci-
sion variables x. The GTOP database addresses researchers to test and compare
their optimization algorithms on the benchmark problems.

Minimize f(x) (x ∈ Rn)

subject to: xl ≤ x ≤ xu (xl, xu ∈ Rn)

(1)

In [22] it was demonstrated that the MIDACO algorithm could solve many
of the GTOP benchmarks to their putative best known solution within minutes
to hours using its default parameters. However, in [22] it was also demonstrated,
that the MIDACO algorithm failed to solve the hardest benchmark of this set,
the Messenger (full mission) benchmark, to even a near global solution despite
a massive run time of 24 hours.

This contribution now addresses exclusively the Messenger (full mission)
benchmark and demonstrates an optimization approach to robustly solve this
benchmark within 24 hours to its (putative) global optimal solution. The con-
sidered optimization approach is called MXHPC, which stands for MIDACO
Extension for High Performance Computing. The MXHPC algorithm is a (mas-
sive) parallelization framework which executes and operates several instances
of the MIDACO algorithm in parallel and has been especially developed for
large-scale computer clusters.

This paper is structured as follows: The second section introduces the Messen-
ger (full mission) benchmark and highlights its difficulty by presenting some pre-
liminary numerical results obtained by CMAES [3] and MIDACO [20]. The third
section describes the MXHPC algorithm in detail. The fourth section presents
the numerical results obtained by MXHPC solving the Messenger (full mission)
benchmark on a moderate computer cluster. Finally some conclusions are drawn.

2 The Messenger (full mission) benchmark

The Messenger (full mission) benchmark models an multi-gravity assist inter-
planetary space mission from Earth to Mercury, including three resonant flyby’s
at Mercury. The sequence of fly-by planets for this mission is given by Earth-
Venus-Venus-Mercury-Mercury-Mercury-Mercury, whereas the first item is the
start planet and the last item is the final target planet. The objective of this
benchmark is to minimize the total ∆V (change in velocity) accumulated dur-
ing the full mission, which can be interpreted as reducing the fuel consumption.
The benchmark invokes 26 continuous decision variables which are described as
follows (for details on hyperbolic trajectories, see Kemble [16]):
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Table 1. Description of optimization variables for Messenger benchmark

Variable Description

1 Launch day measured from 1-Jan 2000 (MJD2000)
2 Initial excess hyperbolic speed (km/sec)
3 Component of excess hyperbolic speed
4 Component of excess hyperbolic speed

5 ∼ 10 Time interval between events (e.g. departure, fly-by, capture)
11 ∼ 16 Fraction of the time interval after which DSM∗ occurs
17 ∼ 21 Radius of flyby (in planet radii)
22 ∼ 26 Angle measured in planet B plane of the planet approach vector

∗ DSM stands for Deep Space Manoeuvre

The Messenger (full mission) benchmark does not contain constraints, except
lower and upper bounds on the 26 decision variables. Table 2 displays the best
known solution (corresponding to an objective function value of f(x) = 1.95863
km/sec) together with the lower and upper bounds and their unit (if available).
Note that the best known solution displayed in Table 2 corresponds closely to
the data of the real Messenger trajectory and is believed to be globally optimal.

The Messenger (full mission) benchmark is part of the GTOP database which
is a collection of (black-box) optimization problems resembling several real-world
space mission trajectories. The instances of the GTOP database are known to
be difficult to solve and have attracted a considerable amount of attention in
the past. Many researchers have worked and published results on the GTOP
database, for example [1], [2], [4], [5], [6], [9], [10], [12], [13], [15], [17], [18],
[24] or [26]. A special feature of the GTOP database is that the actual global
optimal solutions are in fact unknown and thus the ESA/ACT accepts and
publishes any new solution that is at least 0.1% better (relative to the objective
function value) than the current best known solution. Table 3 lists the individual
GTOP benchmark instances (without the Tandem series) together with their
number of solution submissions and the total time span between the first and
last submission, measured in years.

From Table 3 it can be seen that it took the community in most cases several
months to about a year to obtain the putative global optimal solution. From
Table 3 it can also be seen that the Messenger (full mission) benchmark is an
exception in this regard and stands out by the number of submitted solutions
and the time span between its first and last submission. Over 5 years were
required by the community to achieve the current best known solution to the
Messenger (full mission) benchmark. This is a remarkable amount of time and
reflects well the difficulty of this benchmark, about which the ESA states on
their website [8]:
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Table 2. Best known solution for Messenger (full mission)

Variable Lower bound Solution value Upper bound Unit

1 1900 2037.8595972244 2300 MJD2000
2 2.5 4.0500001697 4.05 km/sec
3 0 0.5567269199 1 n/a
4 0 0.6347532625 1 n/a
5 100 451.6575153013 500 days
6 100 224.6939374104 500 days
7 100 221.4390510408 500 days
8 100 266.0693628875 500 days
9 100 357.9584322778 500 days

10 100 534.1038782374 600 days
11 0.01 0.6378086222 0.99 days
12 0.01 0.7293472066 0.99 n/a
13 0.01 0.6981836705 0.99 n/a
14 0.01 0.7407197230 0.99 n/a
15 0.01 0.8289833176 0.99 n/a
16 0.01 0.9028496299 0.99 n/a
17 1.1 1.8337484775 6 n/a
18 1.1 1.1000000238 6 n/a
19 1.05 1.0499999523 6 n/a
20 1.05 1.0499999523 6 n/a
21 1.05 1.0499999523 6 n/a
22 -π 2.7481808788 π n/a
23 -π 1.5952416573 π n/a
24 -π 2.6241779073 π n/a
25 -π 1.6276418577 π n/a
26 -π 1.6058416537 π n/a

Table 3. GTOP database benchmark problems

Number of Time between first
GTOP Benchmark Name submissions and last submission

Cassini1 3 0.5 years
GTOC1 2 1.1 years

Messenger (reduced mission) 3 0.9 years
Messenger (full mission) 10 5.7 years

Cassini2 7 1.2 years
Rosetta 7 0.5 years
Sagas 2 1 (only one submission)

”it was hardly believable that a computer, given the fly-by sequence and
an ample launch window, could design a good trajectory in complete autonomy
without making use of additional problem knowledge.”

ESA/ACT-GTOP website, 2016
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2.1 Preliminary Numerical Results by CMAES and MIDACO

This sub-section further demonstrates the difficulty of the Messenger (full mis-
sion) benchmark by illustrating some preliminary numerical results achieved by
the well-known CMAES [3] algorithm and the MIDACO [20] algorithm. Figure
1 presents a histogram of the solution objective function values obtained by 1000
independent test runs, performed once with CMAES and once with MIDACO.

Fig. 1. Histogram of CMAES (left side) and MIDACO (right side) solutions

The left side of Figure 1 displays the histogram of 1000 solution objective
function values obtained by CMAES. The X-axis represents the objective func-
tion value and the Y-axis represents the frequency of such values among all
those solution. For the numerical tests, the original CMAES implementation
from Hansen [11] was used, all parameters set to default. Table 4 lists detailed
information on the obtained results by CMAES from all test runs.

Table 4. CMAES results from 1000 test runs

Average solution f(x) 19.213 (∆V )
Average function evaluation 232780
Average cpu-time 30.05 sec

Overall best solution f(x) 7.379 (∆V )

Overall execution time 8.3 hours

In each performed test run the CMAES algorithm stopped by itself, if its
internal standard deviation falls under a specific value (default 10−16 was used).
On average the number of function evaluation performed by CMAES was 232780.
Based on this number 1000 test runs were performed with MIDACO (all param-
eters set to default), using a fixed maximal number of 232780 function evaluation
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in each such run. Table 5 lists detailed information on those test runs performed
by MIDACO.

Table 5. MIDACO results from 1000 test runs

Average solution f(x) 14.961 (∆V )
Average function evaluation 232780
Average cpu-time 29.01 sec

Overall best solution f(x) 6.399 (∆V )

Overall execution time 8.1 hours

Comparing the results from the CMAES and MIDACO test runs, it can
be seen that on average the CMAES algorithm stopped at a solution with an
objective function value of 19.213, while the MIDACO algorithm stopped at a
solution with an objective function value of 14.961. Both algorithms required a
similar amount of time, which was about 30 second per run and totalled about
8 hours for all 1000 test run executions. The overall best solution reported by
CMAES corresponded to an objective function value of f(x) = 7.379. The
overall best solution reported by MIDACO corresponded to an objective function
value of f(x) = 6.399.

As the best known solution to Messenger (full mission) benchmark has an
objective function value of f(x) = 1.959, both algorithm (CMAES and MI-
DACO) have still been far away from reaching the global optimal solution in
above setup, despite a significant time budget of 8 hours. This result does not
come as a surprise, but further demonstrates the remarkable difficulty of this
specific GTOP instance.

3 Description of the MXHPC Algorithm

The here considered algorithm represents a parallel framework for the MIDACO
algorithm, which is an evolutionary black-box MINLP solver (see [20]). As this
framework is particular suited for massive parallelization used in High Perfor-
mance Computing (HPC) it is called MXHPC, which stands for MIDACO Ex-
tension for HPC. The basic purpose of the MXHPC algorithm is to execute sev-
eral instances of MIDACO in parallel and manage the exchange of best known
solution among those MIDACO instances.

Figure 2 illustrates how the MXHPC algorithm executes a number of S differ-
ent instances of MIDACO in parallel. In regard to the well known Master/Slave
concept in distributed computing, the indivudal MIDACO instances can be re-
ferred to as slaves, while the MXHPC algorithm can be referred to as master.
In evolutionary algorithms such approach is also denoted as coarse-grained par-
allelization. Note in Figure 2 that the best known solution is exchanged by
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MXHPC between individual MIDACO instances at a certain frequency (mea-
sured in function evaluation).

Fig. 2. Illustration of the MXHPC, executing S instances of MIDACO in parallel.

The MXHPC algorithm implies several individual parameters, this is the
number of MIDACO instances, the exchange frequency of current best known
solution and the survival rate of individual MIDACO instances at exchange
times:

The considered exchange mechanism of best known solutions among individ-
ual MIDACO instances should be explained in more detail now, as this algo-
rithmic step resembles the most sensitive part of the MXHPC algorithm. Let
survive be the percentage (e.g. 25%) of surviving MIDACO instances at some
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Parameter Description

S Number of MIDACO instances (also called slaves)
exchange Solution exchange frequency among slaves
survive Survival rate (in percentage) among slaves

exchange (e.g. 1,000,000 function evaluation) time of the MXHPC algorithm.
Then, at an exchange time, MXHPC will first collect the current best solutions
of each of the S individual MIDACO instances and identifies the survive (e.g.
25%) best among them. Those MIDACO instances, which hold one of those best
solutions, will be unchanged (thus the instance ”survives” the exchange proce-
dure). All other MIDACO will be restarted using the overall best known solution
as starting point.

Readers with a deeper interest in the algorithmic details of MIDACO are
referred to Schlueter et al. [19].

4 Numerical Results of MXHPC on the Messenger (full
mission) benchmark

This section presents the numerical results obtained by MXHPC on the Messen-
ger (full mission) benchmark. Like in [22] the optimization process was split into
two different stages, one basic run (from scratch) and one refinement run. For
both stages a time budget of 12 hours was considered. In total, ten tests (each
consisting of a basic and a refinement run) have been conducted on Messenger
(full mission). All tests have been conducted on the same Fujitsu FX10 cluster
consisting of 64 Sparc64 cpu chips. The results of the basic runs are given in
Subsection 4.1. The results of the refinement runs are given in Subsection 4.2.

4.1 Basic Runs on Messenger (full mission)

This subsection presents and discusses ten individual test runs of MXHPC on
the Messenger (full mission) benchmark from scratch (using a random starting
point). The here considered parameter specifications of the MXHPC algorithm
(see Section 3) are as follows:

Parameter Description

S 1000
exchange 1,000,000
survive 25%

Table 6 reports the objective function value (∆V ), the number of MIDACO
restarts within MXHPC and the number of total function evaluation for each
of the ten individual basic runs of MXHPC on Messenger (full mission). Each
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test run setup differs only in the specific seed for the pseudo random number
generator used within MXHPC. Furthermore, Table 6 displays the time, when
MXHPC (b)reached the objective function value of 2.113, which corresponds
to the overall best reported solution reported by a group (Stracquadanio et al.
[24]) not associated with MIDACO. Note that given the difficulty of Messenger
(full mission), an objective function value of 2.113 can already be considered as
remarkable good, whereas such a solution is still around 8% above the overall
best known one of 1.959.

Table 6. 10 Test runs of MXHPC on MessFull

Seed f(x) Restarts Total Eval (B)reach f(x) = 2.113

1 2.0225 53,250 70,000 × 106 9430 (∼ 2.6 hours)
2 2.0295 52,500 69,000 × 106 7261 (∼ 2.1 hours)
3 2.0313 54,750 72,000 × 106 13284 (∼ 3.7 hours)
4 2.0481 54,000 71,000 × 106 12344 (∼ 3.4 hours)
5 2.0449 51,000 67,000 × 106 5170 (∼ 1.4 hours)
6 2.0481 36,000 47,000 × 106 14104 (∼ 3.9 hours)
7 2.0379 51,000 67,000 × 106 3563 (∼ 1.0 hours)
8 2.0441 52,500 69,000 × 106 7794 (∼ 2.2 hours)
9 2.0528 54,001 71,000 × 106 23273 (∼ 6.5 hours)
10 2.0263 51,750 68,000 × 106 6412 (∼ 1.8 hours)

From Table 6 it can be seen that in every test run a solution close to
f(x) = 2.0 could be achieved, while the mark of ∆V = 2.113 was (b)reached
within one to six hours. It can be further seen that the number of total function
evaluation necessary to achieve such objective function values ranges around
7×1010 (in words: seventy thousand million), which reflects well the complexity
of this optimization problem. The number of MIDACO restarts within MXHPC
ranged around fifty thousands. In addition to the results in Table 6, Figure
3 illustrates the convergence curves of all ten runs in regard to the cpu time
measured in seconds.
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Fig. 3. Convergence curves of ten basic runs (semi-log scale)

In conclusion on Table 6 and Figure 3 it can be stated that MXHPC is able to
robustly solve Messenger (full mission) from scratch to an assumed near global
solution, which is significantly better than the best result yet published by a
different approach (see Stracquadanio et al. [24]).

4.2 Refinement Runs on Messenger (full mission)

This subsection presents the results of the refinement runs for each solution
obtained by the previous basic run illustrated in Subsection 4.1. Particular this
means that each MXHPC solution from Table 6 (with an objective function
value close above 2.0) was used as starting point for each individual refinement
run presented in this subsection. The MXHPC algorithm setup is identical to
the on used for the basic run, except one MIDACO parameter. This parameter is
the FOCUS parameter (see [23]) which is used to concentrate the search process
of each individual MIDACO instance within MXHPC around the submitted
starting point (called X0). While in Subsection 4.1 the default value of zero was
assumed for FOCUS, here a value of 10,0001 is used for all test runs. Note that

1 Note that this is the same value for the FOCUS parameter as used for refinement
runs in [22]
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a FOCUS value of 10,000 will imply a shrinking of the standard devaiation in
MIDACO’s ACO multi-kernel gauss probability functions (see Schlueter et al.
[19]) by a factor of 10,000 times, which is a massive factor that further illustrates
the sensitivity of the Messenger benchmark.

Table 7 shows the obtained result in regard to the final objective function
value (∆V ) and its percentage (calculated as 100×(f(x)−1.959)/1.959) distance
to current best known solution of 1.959.

Table 7. Refinement runs for solutions obtained in Section 4.1

X0 from Seed f(x) Distance to Best Known

1 1.9610 0.1 %
2 1.9609 0.1 %
3 1.9617 0.1 %
4 1.9607 0.1 %
5 1.9626 0.2 %
6 1.9801 1.1 %
7 1.9619 0.1 %
8 1.9689 0.5 %
9 1.9693 0.5 %
10 1.9619 0.2 %

From Table 7 it can be seen that in 5 out of 10 cases a final objective value
close as 0.1% to the current best known one is obtained. In the worst case (X0
from seed 6), a solution with an objective close as 1.1% was obtained. In addition
to the results in Table 7, Figure 4 illustrates the convergence curves of all ten
refinement runs. Note in Figure 4 that the worst case run (corresponding to a
final objective function value of about 1.98) appears as rather isolated result.
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Fig. 4. Convergence curves of ten refinement runs (semi-log scale)

5 Conclusions

This contribution presented a rigorous study on the numerical optimization of
ESA’s Messenger (full mission) benchmark which is an exceptional difficult prob-
lem to solve. A novel algorithm, called MXHPC, was introduced. This algorithm
acts as meta-algorithm on a computer cluster to operate in parallel several in-
stances of the MIDACO algorithm. The MIDACO algorithm has previously
shown to be efficient on interplanetary space mission design (see e.g. [21] or
[22]). The numerical MXHPC results presented here demonstrate that it is pos-
sible to solve the Messenger (full mission) benchmark close to its putative global
optimal solution within a single day. The results presented in section 4 show
that with a robustness of 5 out of 10 runs, a solution as close as 0.1% to the best
known one was obtained within 24 hours of run time on a 64 node Fujitsu FX10
cluster. In the worst case, a still remarkable good solution of just 1.1% above
the best known one was obtained. These results further fortify the effectiveness
of evolutionary computing for highly complex real-world applications that were
previously considered intractable.
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Future research might focus on both, improving the algorithmic performance
of MXHPC and MIDACO as well as performing numerical test on larger com-
puter clusters, having the ultimate goal to further reduce the overall required
time to solve the Messenger (full mission) benchmark to few hours or even min-
utes.
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