
New state-of-the-art results on ESA’s
Messenger Space Mission Benchmark

Martin Schlueter∗, Mohamed Wahib†, and Masaharu Munetomo∗

∗Information Initiative Center, Hokkaido University, Sapporo 060-0811, Japan.
†AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory

National Institute of Advanced Industrial Science and Technology Tokyo, Japan.
{schlueter@midaco-solver.com,mohamed.attia@aist.go.jp,munetomo@iic.hokudai.ac.jp}

Abstract. This contribution presents new state-of-the-art results for ESA’s Messenger space
mission benchmark, which is arguably one of the most difficult benchmarks available. The
European Space Agency (ESA) created a continuous mid-scale black-box optimization bench-
mark which resembles an accurate model of NASA’s 2004 launched Messenger interplane-
tary space probe trajectory. By applying an evolutionary optimization algorithm (MXHPC/
MIDACO) that relies on massive parallelization, it is demonstrated that it is possible to
robustly solve this benchmark to a near global optimal solution within one hour on a com-
puter cluster with 1000 CPU cores. This is a significant improvement over the previously in
2017 published state-of-the-art results where it was demonstrated for the first time, that the
Messenger benchmark could be solved in a fully automatic way and where it took about 12
hours to achieve a near optimal solution. The here presented results fortify the effectiveness
of massively parallelized evolutionary computing for complex real-world problems which have
been previously considered intractable.

Keywords: Messenger Mission, Space Trajectory, Parallelization

1 Introduction

The optimization of interplanetary space trajectories is a long standing challenge for space engineers
and applied mathematicians alike. The European Space Agency (ESA) created a publicly available
comprehensive benchmark database of global trajectory optimization problems, known as GTOP,
corresponding to real-world missions like Cassini, Rosetta and Messenger. The Messenger (full
mission) benchmark in the GTOP database is notably the most difficult instance among those set,
resembling an accurate model of the entire trajectory of the original Messenger mission launched
by NASA in 2004.

The GTOP database expresses each benchmark as optimization problem (1) with box-constraints,
whereas the objective function f(x) is considered as nonlinear black-box function depending on a
n-dimensional real valued vector of decision variables x. The GTOP database addresses researchers
to test and compare their optimization algorithms on the benchmark problems.

Minimize f(x) (x ∈ Rn)

subject to: xl ≤ x ≤ xu (xl, xu ∈ Rn)

(1)

The benchmark instances of the GTOP database are known to be very difficult to solve and
have attracted a considerable amount of attention in the past. Many researchers have worked and
published results on the GTOP database, for example [1], [3], [5], [6], [8], [10], [12], [13], [15], [17],
[18], [19], [26] or [28]. A special feature of the GTOP database is that the actual global optimal
solutions are in fact unknown and thus the ESA/ACT accepts and publishes a new solution that is
at least 0.1% better (relative to the objective function value) than the current best known solution.
Table 1 lists the individual GTOP benchmark instances together with their number of solution
submissions and the total time span between the first and last submission, measured in years. Note
that as of 2020 the original GTOP database is no longer actively maintained by ESA. However an
extended version, named GTOPX, continues the original GTOP source code base and introduces



2 Lecture Notes in Computer Science

Table 1. GTOP database benchmark problems

Number of Time between first
GTOP Benchmark submissions and last submission

Cassini1 3 0.5 years
GTOC1 2 1.1 years

Messenger (reduced) 3 0.9 years
Messenger (full) 10 5.7 years

Cassini2 7 1.2 years
Rosetta 7 0.5 years
Sagas 1 (one submission)

some minor improvements and simplified user-handling for the programming languages C/C++,
Python and Matlab. The GTOPX software is freely available for downloaded at [11].

From Table 1 it can be seen that the Messenger (full mission) benchmark [9], [11] stands out
as being by far the most difficult instance to solve. In most cases it took the community several
months to about a year to obtain the putative global optimal solution, however the Messenger (full
mission) benchmark is an exception in this regard and required a significant amount of submitted
solutions and time span between its first and last submission. Well over 5 years were required by
the community to achieve the current best known solution to the Messenger (full mission) bench-
mark. This is a remarkable amount of time and reflects the difficulty of this benchmark, about
which the ESA stated on their website [9]:

”before the remarkable results...were found, it was hardly believable that a computer...could de-
sign a good trajectory in complete autonomy without making use of additional problem knowledge.”

ESA/ACT-GTOP website, 2020 [9]

This contribution addresses exclusively the Messenger (full mission) benchmark and demon-
strates that it is possible to robustly solve this instance close to its putative global optimal solution
within one hour on the Hokkaido University HUCC Grand Chariot computer cluster [14], using
1000 cores for distributed computing. The considered optimization algorithm is called MXHPC,
which stands for MIDACO Extension for High Performance Computing. The MXHPC algorithm
is a (massive) parallelization framework which executes and operates several instances of the MI-
DACO algorithm in parallel and has been especially developed for large-scale computer clusters.
The here presented results are a significant improvement over the previous state-of-the-art results
published in 2017 [24], where it took 12 hours of computing time to achieve similar results on a
cluster of comparable computing power.

This paper is structured as follows: The second section introduces the Messenger (full mis-
sion) benchmark and highlights its difficulty by referring to some previously published numerical
results. The third section describes the MXHPC algorithm in detail. The fourth section presents
the numerical results obtained by MXHPC solving the Messenger (full mission) benchmark on a
computer cluster. Finally some conclusions are drawn.



Lecture Notes in Computer Science: Authors’ Instructions 3

2 The Messenger (full mission) benchmark

The Messenger (full mission) benchmark [9], [11] models an multi-gravity assist interplanetary
space mission from Earth to Mercury, including three resonant flyby’s at Mercury. The sequence of
fly-by planets for this mission is given by Earth-Venus-Venus-Mercury-Mercury-Mercury-Mercury.

The objective of this benchmark is to minimize the total ∆V (change in velocity) accumulated
during the full mission, which can be interpreted as reducing the fuel consumption. The benchmark
invokes 26 continuous decision variables which are described as follows:

Table 2. Optimization variables for Messenger benchmark

Variable Description

1 Launch day measured from 1-Jan 2000
2 Initial excess hyperbolic speed (km/sec)
3 Component of excess hyperbolic speed
4 Component of excess hyperbolic speed

5 ∼ 10 Time interval between events
11 ∼ 16 Fraction of the time interval after DSM∗

17 ∼ 21 Radius of flyby (in planet radii)
22 ∼ 26 Angle measured in planet B plane

∗ DSM stands for Deep Space Manoeuvre

The best known solution to the problem was obtained in 2014 by the MXHPC/MIDACO
optimization software [22] and holds an objective function value of f(x) = 1.959.1.

Table 3. Best known solution for Messenger (full mission)

Variable Lower Bound Solution Value Upper Bound Unit

1 1900 2037.8595972244 2300 MJD2000
2 2.5 4.0500001697 4.05 km/sec
3 0 0.5567269199 1 n/a
4 0 0.6347532625 1 n/a
5 100 451.6575153013 500 days
6 100 224.6939374104 500 days
7 100 221.4390510408 500 days
8 100 266.0693628875 500 days
9 100 357.9584322778 500 days

10 100 534.1038782374 600 days
11 0.01 0.6378086222 0.99 days
12 0.01 0.7293472066 0.99 n/a
13 0.01 0.6981836705 0.99 n/a
14 0.01 0.7407197230 0.99 n/a
15 0.01 0.8289833176 0.99 n/a
16 0.01 0.9028496299 0.99 n/a
17 1.1 1.8337484775 6 n/a
18 1.1 1.1000000238 6 n/a
19 1.05 1.0499999523 6 n/a
20 1.05 1.0499999523 6 n/a
21 1.05 1.0499999523 6 n/a
22 -π 2.7481808788 π n/a
23 -π 1.5952416573 π n/a
24 -π 2.6241779073 π n/a
25 -π 1.6276418577 π n/a
26 -π 1.6058416537 π n/a

1 Mingcheng Zuo (China Uni. of Geoscience) was able to refine this solution, so it rounds to an objective
function value of f(x) = 1.958.



4 Lecture Notes in Computer Science

2.1 Published results on Messenger (full mission)

While being publicly available for over ten years now, published numerical results on the Messenger
(full mission) benchmark remain very few only. This fact seems to stem from the tremendous
difficulty to solve this problem instance. To our best knowledge, Table 4 lists all current available
publications reporting numerical results on Messenger (full mission) in chronological order.

Table 4. Published results on Messenger (full mission)

Date Author(s) Ref Algorithm Best f(x)

2010 Biscani et. al. [6] PAGMO 3.950
2011 Stracquadanio et. al. [26] SADE 2.970
2011 Bryan [7] IGATO 7.648
2014 Schlueter [23] MIDACO 3.774
2017 Schlueter et al. [24] MXHPC 1.961
2019 Shuka [25] PASS 8.357

Table 4 lists the publication date, authors, reference, name of the considered algorithm together
with the overall best objective function value f(x) obtained by that algorithm within that particular
study. From Table 4 it can be seen that published results significantly vary and only the 2017
publication achieved a value close to the best known solution of 1.959. It is to note that the 2017
study (Schlueter et al. [24]) and 2019 study (Shunka [25]) both applied massive parallelization to
execute their algorithms. The drastic difference in the best achieved solutions between those two
studies (1.961 vs 8.357) illustrates that the use of a super-computer alone is not sufficient to solve
the Messenger (full mission) benchmark and that instead the algorithmic element is crucial.

3 The MXHPC/MIDACO Algorithm

The here considered algorithm is called MXHPC and was originally introduced in 2017, see [24].
MXHPC is a parallelization framework built on top of MIDACO, which is an evolutionary black-
box solver, see [21]. As this framework is particular suited for massive parallelization used in
High Performance Computing (HPC) it is called MXHPC, which stands for MIDACO Extension
for HPC. The purpose of the MXHPC algorithm is to execute several instances of MIDACO in
parallel and manage the exchange of best known solution among those MIDACO instances. The
here presented version of MXHPC differs from the original proposed one by a dynamic instead of
a static exchange rule, which is illustrated in Section 3.1.

Figure 1 illustrates how the MXHPC algorithm executes a number of S different instances of
MIDACO in parallel. In regard to the well known Master/Slave concept in distributed computing,
the individual MIDACO instances can be referred to as slaves, while the MXHPC algorithm can be
referred to as master. In evolutionary algorithms such approach is also denoted as coarse-grained
parallelization. Note in Figure 1 that the best known solution is exchanged by MXHPC between
individual MIDACO instances at a certain frequency (measured in function evaluation).



Lecture Notes in Computer Science: Authors’ Instructions 5

Fig. 1. Illustration of the MXHPC, executing S instances of MIDACO in parallel.

The MXHPC algorithm implies several individual parameters, this is the number of MIDACO
instances, the exchange frequency of current best known solution and the survival rate of individual
MIDACO instances at exchange times:

Parameter Description

S Number of MIDACO instances (called slaves)
exchange Solution exchange frequency among slaves
survive Survival rate (in percentage) among slaves

The considered exchange mechanism of best known solutions among individual MIDACO in-
stances should be explained in more detail now, as this algorithmic step resembles the most sensitive
part of the MXHPC algorithm. Let survive be the percentage (e.g. 25%) of surviving MIDACO
instances at some exchange (e.g. 1,000,000 function evaluation) time of the MXHPC algorithm.
Then, at an exchange time, MXHPC will first collect the current best solutions of each of the
S individual MIDACO instances and identifies the survive (e.g. 25%) best among them. Those
MIDACO instances, which hold one of those best solutions, will be unchanged (thus the instance
”survives” the exchange procedure). All other MIDACO will be restarted using the overall best
known solution as starting point. Readers with a deeper interest in the algorithmic details of
MIDACO are referred to [20].



6 Lecture Notes in Computer Science

3.1 New Modification: Dynamic Exchange

In contrast to the static exchange rule used within MXHPC in the previous publication from
2017 [24], a dynamic exchange rule is considered in this study. Based on some initial value (called
basevalue), the evaluation budget of each individual MIDACO run within the MXHPC framework
(see Figure 1) is linear increased successively. The pseudo code in Algorithm 1 describes in detail
how the evaluation budget of each individual MIDACO instance is calculated, according to the
successive number of exchanges. Note that a base value of 100000 was used for the numerical tests
presented in Section 4.

Algorithm 1: Dynamic Exchange (pseudo code)

set basevalue = 100000
initialize evaluationbudget = 0

for exchange = 1 : ∞
evaluationbudget = evaluationbudget +

exchange × basevalue
end

This dynamic exchange rule is based on the idea that with further progress each individual
MIDACO instance within MXHPC requires more time (aka more function evaluation) to achieve
progress, while such large budgets are not as useful in the beginning of the MXHPC execution.
According to the pseudo code in Algorithm 1, the individual evaluation budgets of MIDACO will
look as following:

eval-budget for MIDACO until 1st exchange: 100000
eval-budget for MIDACO until 2nd exchange: 300000
eval-budget for MIDACO until 3rd exchange: 600000
and so on ...

4 Numerical Results of MXHPC on the Messenger (full mission)
benchmark

This section presents the numerical results obtained by MXHPC on the Messenger (full mission)
benchmark. All results were calculated on the Hokudai supercomputer (HUCC Grand Chariot [14])
utilizing 1000 cores for distributed computing, which are composed of Intel Xeon Gold 6148 CPU’s
with a clock rate of 2.7 GHz. Ten independent test runs of MXHPC have been applied, each using
the original lower bounds (see Table 3) as starting point and a different random seed for MIDACO’s
internal pseudo random number generator. Each individual test run was allowed to execute for one
hour and then stopped automatically. The following parameters have been used for the MXHPC
algorithm:

Parameter Description

S 1000
exchange (basevalue) 100,000

survive 25%

Table 5 reports the characteristics of each individual test run and the averaged values out of
ten runs. The number of total function evaluation is displayed as multitude of 1000 in Table 5,
corresponding to the 1000 cores which were used by MXHPC for the parallelization framework.



Lecture Notes in Computer Science: Authors’ Instructions 7

Table 5. 10 Test runs of MXHPC on Messenger

Run f(x) Evaluation Time [sec]

1 2.0208 41,500,000 ×1000 3626.35
2 2.0245 41,500,000 ×1000 3637.20
3 2.0142 43,500,000 ×1000 3654.09
4 2.0242 48,500,000 ×1000 3639.93
5 2.0187 43,500,000 ×1000 3654.51
6 2.0182 45,500,000 ×1000 3602.26
7 2.0225 44,500,000 ×1000 3642.45
8 2.0264 47,500,000 ×1000 3667.15
9 2.0143 43,500,000 ×1000 3679.37
10 2.0220 42,500,000 ×1000 3647.33

Average: 2.0206 44,200,001 × 1000 3645.06

From Table 5 it can be seen that each run converged to an objective function value roughly
above f(x) = 2.0 within one hour of run time. The averaged converged objective function value is
f(x) = 2.0206 corresponding to the enormous number of about 44×109 function evaluation in total.
In addition to Table 5, Figure 2 illustrates the convergence curves in semi-log scale of all ten test
runs. Note in Figure 2 that all test runs have converged below an objective function value of f(x)
= 6.0 within 1000 seconds (∼15 minutes) of CPU run time.

Fig. 2. Convergence curves of 10 individual MXHPC test runs

4.1 Comparison with previous results from 2017

This subsection gives an in-depth comparison between the newly presented results and the previ-
ously published ones in 2017, see [24]. Table 6 lists the ten from scratch1 test runs of MXHPC with
their corresponding final objective function value f(x) and corresponding number of total function
evaluation. Both results, those from 2017 and 2020 , have been calculated on a cluster with 1000
cores. Back in 2017 this was a Fujitsu FX10 cluster [2] while now in 2020 this was the HUCC
Grand Chariot cluster of the Hokkaido University [14].

1 From scratch means here that the lower bounds have been used for all test runs. Those test runs therefore
aim at exploring the entire search space and are not refinements of previous found solutions.



8 Lecture Notes in Computer Science

Table 6. Comparison regarding overall solution quality

New Results (2020) Previous Results (2017)

Run f(x) Evaluation f(x) Evaluation

1 2.0208 41,500 ×106 2.0225 70,000 ×106

2 2.0245 41,500 ×106 2.0295 69,000 ×106

3 2.0142 43,500 ×106 2.0313 72,000 ×106

4 2.0242 48,500 ×106 2.0481 71,000 ×106

5 2.0187 43,500 ×106 2.0449 67,000 ×106

6 2.0182 45,500 ×106 2.0481 47,000 ×106

7 2.0225 44,500 ×106 2.0379 67,000 ×106

8 2.0264 47,500 ×106 2.0441 69,000 ×106

9 2.0143 43,500 ×106 2.0528 71,000 ×106

10 2.0220 42,500 ×106 2.0263 68,000 ×106

∅ 2.0206 44,200 × 106 2.0386 67,100 × 106

From Table 6 it can be seen that both series of results averaged at a similar final solution
objective function value of 2.0206 and 2.0386. The percentual difference between those values
is about 0.9%, which may appear small, but is in fact relevant in context of the difficulty of
the Messenger benchmark. In regard to the number of total function valuation, the new results
require roughly about half (58.85%) of the amount required in 2017. As the results from 2017 were
calculated with a time limit of 12 hours for each run while the new results are required in only
1 hour for each run, the averaged number of function evaluation reveal that the HUCC Grand
Chariot cluster performed around 5 times (4.938 = 12×(1-0.5885)) faster than the Fujitsu FX10
cluster.

Given that the new results required only around half the amount of function evaluation as back
in 2017 and that the averaged final solution objective function value still shows an improvement
of 0.9% over the old results, it can be concluded that the dynamic exchange strategy (see Section
3.1) is improving the algorithmic performance about at least two times.

An interesting threshold value for the Messenger (full mission) benchmark is the objective
function value of f(x) = 2.113. The solution corresponding to this value was obtained by G. Strac-
quadanio (Johns Hopkins University) and G. Nicosia (University of Catania) and was included as
new record solution in the GTOP database on 10th April 2012. Such solution is an improvement
over the previous published one in Stracquadanio et al. [26] and to this date it remains the best
known solution that was found without utilizing the MIDACO algorithm. It is therefore the best
known competitive result and can act as a reference to compare with. In [24] the CPU time to
reach the threshold of 2.113 has been measured and reported. Table 7 reports for each of the ten
current MXHPC test runs after what amount of function evaluation and CPU time and with what
objective function value the threshold of 2.113 was breached. Additionally Table 7 included the
CPU time to breach the threshold in the 2017 study [24].



Lecture Notes in Computer Science: Authors’ Instructions 9

Table 7. Comparison regarding breach of f(x) = 2.113

New Results (2020) Results (2017)

Run f(x) Evaluation Time [sec] Time [sec]

1 2.112 5,500 ×106 467 9,430
2 2.091 5,500 ×106 473 7,261
3 2.107 8,500 ×106 678 13,284
4 2.084 25,500 ×106 1,593 12,344
5 2.098 17,500 ×106 1,331 5,170
6 2.068 18,500 ×106 1,312 14,104
7 2.091 23,500 ×106 1,801 3,563
8 2.090 33,500 ×106 242 7,794
9 2.080 5,500 ×106 450 23,273
10 2.101 5,500 ×106 477 6,412

∅ 2.092 14,900 ×106 882.4 10,263.5

From Table 7 it can be seen that back in 2017 it took on average 10,263.5 seconds to breach the
threshold value of 2.113, while it took 882.4 seconds on average in this study. That is a 11.6 times
improvement in such regard. Note that in Table 7 the number of function evaluation required
to breach the threshold is on average about 15×109, while the number of function evaluation
performed in a full hour in Table 5 averages about 44×109. This means that about 1/3 of the total
evaluation budget (aka CPU time) is spent by MXHPC on reaching a value of about 2.092 and
then 2/3 of the budget is spent by MXHPC on further converging toward a value of about 2.0206.
This observation indicates that the Messenger (full mission) benchmark is exceptionally difficult in
both regards: Locating the global optimal valley and then converging into that area to the exact
solution.

5 Conclusions

Since over ten years ESA’s Messenger benchmark is publicly available and acts as one of world’s
most challenging real-world benchmarks, formulated as numerical black-box optimization problem.
In 2017 it could be shown for the very first time, that it is possible to solve this benchmark in
a fully automatic way by applying an evolutionary algorithm on a supercomputer. While few
publications attempted to address the Messenger problem, none were able to solve it to a close
optimal solution, except for the 2017 study (see Table 4). This is in particularly true for the sub-
optimal results published in Shuka [25], which also applied various evolutionary strategies on a
supercomputer.

The results presented in this contribution are a continuation of the 2017 study and exhibit a
significant improvement in terms of CPU run-time and evaluation budget. While in 2017 it took
about 12 hours, the here presented results require only one hour of run-time and about half the
function evaluation budget to achieve a similar (even slightly better) solution quality (see Table 6).
An in-depth analysis in Section 4.1 revealed that this performance gain was about five times due
to the faster hardware and about two times due to the algorithmic change made within MXHPC
described in Section 3.1.

While the novelty of the algorithmic contribution in this study is only incremental, the reported
numerical results are still of significance to a broad community of researchers who utilize these kind
of benchmarks. This is due to the tremendous difficulty of the Messenger benchmark, about which
the ESA stated that it was hardly believable to be solvable in an automatic fashion at all (see
quote in Section 1). While the 2017 study proved the automatic solubility of this benchmark,
this study is able to reduce the required CPU run-time to a single hour to robustly achieve a
near-optimal solution. Overall, the here presented results fortify the effectiveness of massively
parallelized evolutionary computing for complex real-world problems which have been previously
considered intractable.



10 Lecture Notes in Computer Science

References

1. Addis, B., Cassioli, A., Locatelli, M. & Schoen, F., Global optimization for the design of space trajec-
tories. Comput. Optim. Appl. 48(3), 635-652, 2011.

2. AIST Artificial Intelligence Cloud (AAIC).
https://www.airc.aist.go.jp/en/info_details/computer-resources.html (2020)

3. Ampatzis, C., & Izzo, D.: Machine learning techniques for approximation of objective functions in
trajectory optimisation, Proc. Int. Conf. Artificial Intelligence in Space (IJCAI), 2009.

4. Auger A., Hansen N.: A Restart CMA Evolution Strategy With Increasing Population Size. IEEE
Congress on Evolutionary Computation, Proceedings. IEEE. pp. 17691776 (2005)

5. Biazzini, M., Banhelyi, B., Montresor, A. & Jelasity, M: Distributed Hyper-heuristics for Real Parameter
Optimization, Proc. 11th Ann. Conf. Genetic and Evolutionary Computation (GECCO), 1339-1346,
2009.

6. Biscani, F., Izzo, D. & Yam, C.H.: A Global Optimisation Toolbox for Massively Parallel Engineering
Optimisation, Proc. 4th Int. Conf. Astrodynamics Tools and Techniques (ICATT), 2010.

7. Bryan J.M.: Global optimization of MGA-DSM problems using the Interplanetary Gravity Assist Tra-
jectory Optimizer (IGATO), Master Thesis, California Polytechnic State University (USA), 2011

8. Danoy, G., Pinto, F.,G., Dorronsoro, B. & Bouvry, P.: New State-Of-The-Art Results For Cassini2
Global Trajectory Optimization Problem, Acta Futura 5, 65-72, 2012.

9. European Space Agency (ESA) and Advanced Concepts Team (ACT). GTOP database - global optimi-
sation trajectory problems and solutions, archived webpage https://www.esa.int/gsp/ACT/projects/

gtop/messenger_full/, 2020.
10. Gad, A.,H.,G.,E.: Space trajectories optimization using variable-chromosome-length genetic algo-

rithms, PhD-Thesis, Michigan Technological University, USA, 2011.
11. GTOPX - Space Mission Benchmark Collection, software available at http://www.midaco-solver.

com/index.php/about/benchmarks/gtopx, 2020.
12. Gruber, A.: Multi Gravity Assist Optimierung mittels Evolutionsstrategien, BSc-Thesis, Vienna Uni-

versity of Technology, Austria, 2009.
13. Henderson, T.,A.: A Learning Approach To Sampling Optimization: Applications in Astrodynamics,

PhD-Theis, Texas A & M University, USA, 2013.
14. Hokaido University High-Performance Intercloud.

https://www.hucc.hokudai.ac.jp/en/supercomputer/sc-overview/ (2020)
15. Islam, S.K.M., Roy, S.G.S. & Suganthan, P.N.: An adaptive differential evolution algorithm with novel

mutation and crossover strategies for global numerical optimization, IEEE Transactions on Systems,
Man and Cybernetics 42(2), 482-500, 2012

16. Izzo, D.: 1st ACT global trajectory optimisation competition: Problem description and summary of
the results Acta Astronaut. 61(9), 731-734, 2007.

17. Izzo, D.: Global Optimization and Space Pruning for Spacecraft Trajectory Design. Spacecraft Trajec-
tory Optimization Conway, B. (Eds.), Cambridge University Press, 178-199, 2010.

18. Lancinskas, A., Zilinskas, J. & Ortigosa, P., M.: Investigation of parallel particle swarm optimization
algorithm with reduction of the search area, Proc. Int. Conf. Cluster Computing Workshops and Posters
(IEEE), 2010.

19. Musegaas, P.: Optimization of Space Trajectories Including Multiple Gravity Assists and Deep Space
Maneuvers, MSc Thesis, Delft University of Technology, Netherlands, 2012.

20. Schlueter, M., Egea, J.A. & Banga, J.R.: Extended ant colony optimization for non-convex mixed
integer nonlinear programming, Comput. Oper Res. 36(7), 2217-2229, 2009.

21. Schlueter, M., Gerdts, M. & Rueckmann, J.J.: A numerical study of MIDACO on 100 MINLP bench-
marks, Optimization 61(7), 873-900, 2012a.

22. Schlueter M., Erb S., Gerdts M., Kemble S., & Rueckmann J.J.: MIDACO on MINLP Space Applica-
tions. Advances in Space Research, 51(7), 1116-1131, 2013a.

23. Schlueter M.: MIDACO Software Performance on Interplanetary Trajectory Benchmarks. Adv. Space
Res., 54(4), pp. 744-754, 2014.

24. Schlueter M., Wahib M., & Munetomo M.: Numerical optimization of ESAs Messenger space mission
benchmark Proceedings of the Evostar Conference. Proceedings of the Evostar Conference (Springer),
Amsterdam, April 19-21, pp. 725-737, 2017.

25. Shuka R.: Parallele adaptive Schwarmsuche fuer Blackbox-Probleme, PhD-Thesis, Gottfried Wilhelm
Leibniz University Hannover (Germany), 2018.

26. Stracquadanio, G., La Ferla, A., De Felice, M. & Nicosia, G.: Design of robust space trajectories, Proc.
31st Int. Conf. Artificial Intelligence (SGAI), 2011.

27. M. Ceriotti, M. Vasile: MGA trajectory planning with an ACO-inspired algorithm, Acta Astronautica,
67 (9-10). pp. 1202-1217, 2010.

28. Vinko, T. & Izzo, D.: Global Optimisation Heuristics and Test Problems for Preliminary Spacecraft
Trajectory Design, European Space Agency, ACT Tec. Rept. ACT-TNT-MAD-GOHTPPSTD, 2008.


